Showing 26 open source projects for "video-making"

View related business solutions
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • All Things Performance and Partner Marketing, All in One Place Icon
    All Things Performance and Partner Marketing, All in One Place

    Track calls, leads, and clicks without the manual work

    Automatically tie revenue back to campaigns, channels, publishers, and networks through marketing attribution. Spend less time juggling reports, and more time optimizing for growth by using a single operating solution for partner and performance marketing.
    Learn More
  • 1
    Norfair

    Norfair

    Lightweight Python library for adding real-time multi-object tracking

    ...Any detector expressing its detections as a series of (x, y) coordinates can be used with Norfair. This includes detectors performing tasks such as object or keypoint detection. It can easily be inserted into complex video processing pipelines to add tracking to existing projects. At the same time, it is possible to build a video inference loop from scratch using just Norfair and a detector. Supports moving camera, re-identification with appearance embeddings, and n-dimensional object tracking. Norfair provides several predefined distance functions to compare tracked objects and detections. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    SAHI

    SAHI

    A lightweight vision library for performing large object detection

    ...Detection of small objects and objects far away in the scene is a major challenge in surveillance applications. Such objects are represented by small number of pixels in the image and lack sufficient details, making them difficult to detect using conventional detectors. In this work, an open-source framework called Slicing Aided Hyper Inference (SAHI) is proposed that provides a generic slicing aided inference and fine-tuning pipeline for small object detection.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Open WebUI

    Open WebUI

    User-friendly AI Interface

    Open WebUI is an extensible, feature-rich, and user-friendly self-hosted AI platform designed to operate entirely offline. It supports various LLM runners like Ollama and OpenAI-compatible APIs, with a built-in inference engine for Retrieval Augmented Generation (RAG), making it a powerful AI deployment solution. Key features include effortless setup via Docker or Kubernetes, seamless integration with OpenAI-compatible APIs, granular permissions and user groups for enhanced security, responsive design across devices, and full Markdown and LaTeX support for enriched interactions. Additionally, Open WebUI offers a Progressive Web App (PWA) for mobile devices, providing offline access and a native app-like experience. ...
    Downloads: 97 This Week
    Last Update:
    See Project
  • 4
    Sagify

    Sagify

    LLMs and Machine Learning done easily

    ...It abstracts the complexities involved in setting up and managing SageMaker resources, allowing developers to focus on building and fine-tuning models. Sagify provides a command-line interface (CLI) and supports various machine-learning frameworks, making it accessible for a wide range of users.
    Downloads: 1 This Week
    Last Update:
    See Project
  • Get More Customers For Your Auto Repair Shop Icon
    Get More Customers For Your Auto Repair Shop

    Drive the Right Business to Your Auto Repair Shop with KUKUI.

    Kukui's All-in-One Success Platform is a robust integrated marketing software solution that helps businesses in the automotive repair industry to grow their brand and take it to the next level. Kukui offers tools for conversion rate optimization, POS integration, email marketing and retention as well as revenue tracking.
    Learn More
  • 5
    TensorRT

    TensorRT

    C++ library for high performance inference on NVIDIA GPUs

    NVIDIA® TensorRT™ is an SDK for high-performance deep learning inference. It includes a deep learning inference optimizer and runtime that delivers low latency and high throughput for deep learning inference applications. TensorRT-based applications perform up to 40X faster than CPU-only platforms during inference. With TensorRT, you can optimize neural network models trained in all major frameworks, calibrate for lower precision with high accuracy, and deploy to hyperscale data centers,...
    Downloads: 21 This Week
    Last Update:
    See Project
  • 6
    Seldon Core

    Seldon Core

    An MLOps framework to package, deploy, monitor and manage models

    ...Our open-source framework makes it easier and faster to deploy your machine learning models and experiments at scale on Kubernetes. The Kubeflow project is dedicated to making deployments of machine learning (ML) workflows on Kubernetes.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 7
    Neural Speed

    Neural Speed

    An innovative library for efficient LLM inference

    neural-speed is an innovative library developed by Intel to enhance the efficiency of Large Language Model (LLM) inference through low-bit quantization techniques. By reducing the precision of model weights and activations, neural-speed aims to accelerate inference while maintaining model accuracy, making it suitable for deployment in resource-constrained environments.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    RamaLama

    RamaLama

    Simplifies the local serving of AI models from any source

    ...Developers can use familiar container commands to pull, run, and interact with AI models from any source, treating models similarly to how container images are handled in OCI workflows. RamaLama supports multiple model registries and offers a REST API or chatbot interface for interacting with running models, making it flexible for local development, testing, or integration into larger systems.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 9
    EconML

    EconML

    Python Package for ML-Based Heterogeneous Treatment Effects Estimation

    ...This package was designed and built as part of the ALICE project at Microsoft Research with the goal of combining state-of-the-art machine learning techniques with econometrics to bring automation to complex causal inference problems. One of the biggest promises of machine learning is to automate decision-making in a multitude of domains. At the core of many data-driven personalized decision scenarios is the estimation of heterogeneous treatment effects: what is the causal effect of an intervention on an outcome of interest for a sample with a particular set of features? In a nutshell, this toolkit is designed to measure the causal effect of some treatment variable(s) T on an outcome variable Y, controlling for a set of features X, W and how does that effect vary as a function of X.
    Downloads: 2 This Week
    Last Update:
    See Project
  • Respond 100x faster, more accurately, and improve your documentation Icon
    Respond 100x faster, more accurately, and improve your documentation

    Designed for forward-thinking security, sales, and compliance teams

    Slash response times for questionnaires, audits, and RFPs by up to 90%. OptiValue.ai automates the heavy lifting, freeing your team to focus on strategic priorities with intuitive tools for seamless review and validation.
    Learn More
  • 10
    UForm

    UForm

    Multi-Modal Neural Networks for Semantic Search, based on Mid-Fusion

    UForm is a Multi-Modal Modal Inference package, designed to encode Multi-Lingual Texts, Images, and, soon, Audio, Video, and Documents, into a shared vector space! It comes with a set of homonymous pre-trained networks available on HuggingFace portal and extends the transfromers package to support Mid-fusion Models. Late-fusion models encode each modality independently, but into one shared vector space. Due to independent encoding late-fusion models are good at capturing coarse-grained features but often neglect fine-grained ones. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    DeepDetect

    DeepDetect

    Deep Learning API and Server in C++14 support for Caffe, PyTorch

    ...While the Open Source Deep Learning Server is the core element, with REST API, and multi-platform support that allows training & inference everywhere, the Deep Learning Platform allows higher level management for training neural network models and using them as if they were simple code snippets. Ready for applications of image tagging, object detection, segmentation, OCR, Audio, Video, Text classification, CSV for tabular data and time series. Neural network templates for the most effective architectures for GPU, CPU, and Embedded devices. Training in a few hours and with small data thanks to 25+ pre-trained models. Full Open Source, with an ecosystem of tools (API clients, video, annotation, ...) Fast Server written in pure C++, a single codebase for Cloud, Desktop & Embedded.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    RWKV Runner

    RWKV Runner

    A RWKV management and startup tool, full automation, only 8MB

    RWKV (pronounced as RwaKuv) is an RNN with GPT-level LLM performance, which can also be directly trained like a GPT transformer (parallelizable). So it's combining the best of RNN and transformer - great performance, fast inference, fast training, saves VRAM, "infinite" ctxlen, and free text embedding. Moreover it's 100% attention-free. Default configs has enabled custom CUDA kernel acceleration, which is much faster and consumes much less VRAM. If you encounter possible compatibility...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 13
    LitGPT

    LitGPT

    20+ high-performance LLMs with recipes to pretrain, finetune at scale

    LitGPT is a collection of over 20 high-performance large language models (LLMs) accompanied by recipes to pretrain, finetune, and deploy them at scale. It provides implementations without abstractions, making it beginner-friendly while offering advanced features like flash attention and support for various precision levels. LitGPT is designed to run efficiently across multiple GPUs or TPUs, catering to both small-scale and large-scale deployments.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    DALI

    DALI

    A GPU-accelerated library containing highly optimized building blocks

    The NVIDIA Data Loading Library (DALI) is a library for data loading and pre-processing to accelerate deep learning applications. It provides a collection of highly optimized building blocks for loading and processing image, video and audio data. It can be used as a portable drop-in replacement for built-in data loaders and data iterators in popular deep learning frameworks. Deep learning applications require complex, multi-stage data processing pipelines that include loading, decoding, cropping, resizing, and many other augmentations. These data processing pipelines, which are currently executed on the CPU, have become a bottleneck, limiting the performance and scalability of training and inference. ...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 15
    BrowserAI

    BrowserAI

    Run local LLMs like llama, deepseek, kokoro etc. inside your browser

    BrowserAI is a cutting-edge platform that allows users to run large language models (LLMs) directly in their web browser without the need for a server. It leverages WebGPU for accelerated performance and supports offline functionality, making it a highly efficient and privacy-conscious solution. The platform provides a developer-friendly SDK with pre-configured popular models, and it allows for seamless switching between MLC and Transformer engines. Additionally, it supports features such as speech recognition, text-to-speech, structured output generation, and Web Worker support for non-blocking UI performance.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    MNN

    MNN

    MNN is a blazing fast, lightweight deep learning framework

    ...At present, MNN has been integrated in more than 20 apps of Alibaba Inc, such as Taobao, Tmall, Youku, Dingtalk, Xianyu and etc., covering more than 70 usage scenarios such as live broadcast, short video capture, search recommendation, product searching by image, interactive marketing, equity distribution, security risk control. In addition, MNN is also used on embedded devices, such as IoT. MNN Workbench could be downloaded from MNN's homepage, which provides pretrained models, visualized training tools, and one-click deployment of models to devices. ...
    Downloads: 6 This Week
    Last Update:
    See Project
  • 17
    Adversarial Robustness Toolbox

    Adversarial Robustness Toolbox

    Adversarial Robustness Toolbox (ART) - Python Library for ML security

    ...ART supports all popular machine learning frameworks (TensorFlow, Keras, PyTorch, MXNet, sci-kit-learn, XGBoost, LightGBM, CatBoost, GPy, etc.), all data types (images, tables, audio, video, etc.) and machine learning tasks (classification, object detection, generation, certification, etc.).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    OpenVINO Model Server

    OpenVINO Model Server

    A scalable inference server for models optimized with OpenVINO

    OpenVINO™ Model Server is a high-performance inference serving system designed to host and serve machine learning models that have been optimized with the OpenVINO toolkit. It’s implemented in C++ for scalability and efficiency, making it suitable for both edge and cloud deployments where inference workloads must be reliable and high throughput. The server exposes model inference via standard network protocols like REST and gRPC, allowing any client that speaks those protocols to request predictions remotely, abstracting away the complexity of where and how the model runs. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    DeepSpeed MII

    DeepSpeed MII

    MII makes low-latency and high-throughput inference possible

    ...While open-sourcing has democratized access to AI capabilities, their application is still restricted by two critical factors: inference latency and cost. DeepSpeed-MII is a new open-source python library from DeepSpeed, aimed towards making low-latency, low-cost inference of powerful models not only feasible but also easily accessible. MII offers access to the highly optimized implementation of thousands of widely used DL models. MII-supported models achieve significantly lower latency and cost compared to their original implementation.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    towhee

    towhee

    Framework that is dedicated to making neural data processing

    ...From images to text to 3D molecular structures, Towhee supports data transformation for nearly 20 different unstructured data modalities. We provide end-to-end pipeline optimizations, covering everything from data decoding/encoding, to model inference, making your pipeline execution 10x faster. Towhee provides out-of-the-box integration with your favorite libraries, tools, and frameworks, making development quick and easy. Towhee includes a pythonic method-chaining API for describing custom data processing pipelines. We also support schemas, making processing unstructured data as easy as handling tabular data.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    EvaDB

    EvaDB

    Database system for building simpler and faster AI-powered application

    ...This programming complexity prevents people who are experts in other domains from benefiting from these models. Running these deep learning models on large document or video datasets is costly and time-consuming. For example, the state-of-the-art object detection model takes multiple GPU years to process just a week’s videos from a single traffic monitoring camera. Besides the money spent on hardware, these models also increase the time that you spend waiting for the model inference to finish.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    pipeless

    pipeless

    A computer vision framework to create and deploy apps in minutes

    ...Pipeless is inspired by modern serverless technologies. It provides the development experience of serverless frameworks applied to computer vision. You provide some functions that are executed for new video frames and Pipeless takes care of everything else. You can easily use industry-standard models, such as YOLO, or load your custom model in one of the supported inference runtimes. Pipeless ships some of the most popular inference runtimes, such as the ONNX Runtime, allowing you to run inference with high performance on CPU or GPU out-of-the-box. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    SageMaker Inference Toolkit

    SageMaker Inference Toolkit

    Serve machine learning models within a Docker container

    ...Containerizing your model and code enables fast and reliable deployment of your model. The SageMaker Inference Toolkit implements a model serving stack and can be easily added to any Docker container, making it deployable to SageMaker. This library's serving stack is built on Multi Model Server, and it can serve your own models or those you trained on SageMaker using machine learning frameworks with native SageMaker support.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Medusa

    Medusa

    Framework for Accelerating LLM Generation with Multiple Decoding Heads

    ...This approach allows for parallel processing during text generation, significantly enhancing throughput and reducing response times. Medusa is designed to be simple to implement and integrates with existing LLM infrastructures, making it a practical solution for scaling LLM applications.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 25
    Repo of Tree of Thoughts (ToT)

    Repo of Tree of Thoughts (ToT)

    Implementation of "Tree of Thoughts

    ...ToT allows LMs to perform deliberate decision-making by considering multiple different reasoning paths and self-evaluating choices to decide the next course of action, as well as looking ahead or backtracking when necessary to make global choices.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • Next