Showing 42 open source projects for "python language"

View related business solutions
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    The database for AI-powered applications.

    MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
    Start Free
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1
    Mosec

    Mosec

    A high-performance ML model serving framework, offers dynamic batching

    Mosec is a high-performance and flexible model-serving framework for building ML model-enabled backend and microservices. It bridges the gap between any machine learning models you just trained and the efficient online service API.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    LazyLLM

    LazyLLM

    Easiest and laziest way for building multi-agent LLMs applications

    LazyLLM is an optimized, lightweight LLM server designed for easy and fast deployment of large language models. It is fully compatible with the OpenAI API specification, enabling developers to integrate their own models into applications that normally rely on OpenAI’s endpoints. LazyLLM emphasizes low resource usage and fast inference while supporting multiple models.
    Downloads: 8 This Week
    Last Update:
    See Project
  • 3
    optillm

    optillm

    Optimizing inference proxy for LLMs

    OptiLLM is an optimizing inference proxy for Large Language Models (LLMs) that implements state-of-the-art techniques to enhance performance and efficiency. It serves as an OpenAI API-compatible proxy, allowing for seamless integration into existing workflows while optimizing inference processes. OptiLLM aims to reduce latency and resource consumption during LLM inference.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 4
    Adapters

    Adapters

    A Unified Library for Parameter-Efficient Learning

    Adapters is an add-on library to HuggingFace's Transformers, integrating 10+ adapter methods into 20+ state-of-the-art Transformer models with minimal coding overhead for training and inference. Adapters provide a unified interface for efficient fine-tuning and modular transfer learning, supporting a myriad of features like full-precision or quantized training (e.g. Q-LoRA, Q-Bottleneck Adapters, or Q-PrefixTuning), adapter merging via task arithmetics or the composition of multiple adapters...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Build Securely on Azure with Proven Frameworks Icon
    Build Securely on Azure with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 5
    Infinity

    Infinity

    Low-latency REST API for serving text-embeddings

    Infinity is a high-throughput, low-latency REST API for serving vector embeddings, supporting all sentence-transformer models and frameworks. Infinity is developed under MIT License. Infinity powers inference behind Gradient.ai and other Embedding API providers.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 6
    TensorFlow Probability

    TensorFlow Probability

    Probabilistic reasoning and statistical analysis in TensorFlow

    TensorFlow Probability is a library for probabilistic reasoning and statistical analysis. TensorFlow Probability (TFP) is a Python library built on TensorFlow that makes it easy to combine probabilistic models and deep learning on modern hardware (TPU, GPU). It's for data scientists, statisticians, ML researchers, and practitioners who want to encode domain knowledge to understand data and make predictions. Since TFP inherits the benefits of TensorFlow, you can build, fit, and deploy a model using a single language throughout the lifecycle of model exploration and production. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    FlashInfer

    FlashInfer

    FlashInfer: Kernel Library for LLM Serving

    FlashInfer is a kernel library designed to enhance the serving of Large Language Models (LLMs) by optimizing inference performance. It provides a high-performance framework that integrates seamlessly with existing systems, aiming to reduce latency and improve efficiency in LLM deployments. FlashInfer supports various hardware architectures and is built to scale with the demands of production environments.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 8
    LitGPT

    LitGPT

    20+ high-performance LLMs with recipes to pretrain, finetune at scale

    LitGPT is a collection of over 20 high-performance large language models (LLMs) accompanied by recipes to pretrain, finetune, and deploy them at scale. It provides implementations without abstractions, making it beginner-friendly while offering advanced features like flash attention and support for various precision levels. LitGPT is designed to run efficiently across multiple GPUs or TPUs, catering to both small-scale and large-scale deployments.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 9
    marqo

    marqo

    Tensor search for humans

    A tensor-based search and analytics engine that seamlessly integrates with your applications, websites, and workflows. Marqo is a versatile and robust search and analytics engine that can be integrated into any website or application. Due to horizontal scalability, Marqo provides lightning-fast query times, even with millions of documents. Marqo helps you configure deep-learning models like CLIP to pull semantic meaning from images. It can seamlessly handle image-to-image, image-to-text and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Get the most trusted enterprise browser Icon
    Get the most trusted enterprise browser

    Advanced built-in security helps IT prevent breaches before they happen

    Defend against security incidents with Chrome Enterprise. Create customizable controls, manage extensions and set proactive alerts to keep your data and employees protected without slowing down productivity.
    Download Chrome
  • 10
    LLMFlows

    LLMFlows

    LLMFlows - Simple, Explicit and Transparent LLM Apps

    LLMFlows is a framework for building simple, explicit, and transparent applications utilizing Large Language Models (LLMs). It emphasizes clarity and control in the development process, allowing developers to create LLM-powered applications with well-defined workflows and interactions. LLMFlows supports various LLMs and provides tools to manage prompts, responses, and application logic effectively.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 11
    llama2-webui

    llama2-webui

    Run any Llama 2 locally with gradio UI on GPU or CPU from anywhere

    Running Llama 2 with gradio web UI on GPU or CPU from anywhere (Linux/Windows/Mac).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Petals

    Petals

    Run 100B+ language models at home, BitTorrent-style

    Run 100B+ language models at home, BitTorrent‑style. Run large language models like BLOOM-176B collaboratively — you load a small part of the model, then team up with people serving the other parts to run inference or fine-tuning. Single-batch inference runs at ≈ 1 sec per step (token) — up to 10x faster than offloading, enough for chatbots and other interactive apps. Parallel inference reaches hundreds of tokens/sec. Beyond classic language model APIs — you can employ any fine-tuning and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Medusa

    Medusa

    Framework for Accelerating LLM Generation with Multiple Decoding Heads

    Medusa is a framework aimed at accelerating the generation capabilities of Large Language Models (LLMs) by employing multiple decoding heads. This approach allows for parallel processing during text generation, significantly enhancing throughput and reducing response times. Medusa is designed to be simple to implement and integrates with existing LLM infrastructures, making it a practical solution for scaling LLM applications.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    pipeless

    pipeless

    A computer vision framework to create and deploy apps in minutes

    Pipeless is an open-source computer vision framework to create and deploy applications without the complexity of building and maintaining multimedia pipelines. It ships everything you need to create and deploy efficient computer vision applications that work in real-time in just minutes. Pipeless is inspired by modern serverless technologies. It provides the development experience of serverless frameworks applied to computer vision. You provide some functions that are executed for new...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 15
    Repo of Tree of Thoughts (ToT)

    Repo of Tree of Thoughts (ToT)

    Implementation of "Tree of Thoughts

    Language models are increasingly being deployed for general problem-solving across a wide range of tasks, but are still confined to token-level, left-to-right decision-making processes during inference. This means they can fall short in tasks that require exploration, strategic lookahead, or where initial decisions play a pivotal role. To surmount these challenges, we introduce a new framework for language model inference, Tree of Thoughts (ToT), which generalizes over the popular Chain of...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    GPT-NeoX

    GPT-NeoX

    Implementation of model parallel autoregressive transformers on GPUs

    This repository records EleutherAI's library for training large-scale language models on GPUs. Our current framework is based on NVIDIA's Megatron Language Model and has been augmented with techniques from DeepSpeed as well as some novel optimizations. We aim to make this repo a centralized and accessible place to gather techniques for training large-scale autoregressive language models, and accelerate research into large-scale training. For those looking for a TPU-centric codebase, we...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Hugging Face Transformer

    Hugging Face Transformer

    CPU/GPU inference server for Hugging Face transformer models

    Optimize and deploy in production Hugging Face Transformer models in a single command line. At Lefebvre Dalloz we run in-production semantic search engines in the legal domain, in the non-marketing language it's a re-ranker, and we based ours on Transformer. In that setup, latency is key to providing a good user experience, and relevancy inference is done online for hundreds of snippets per user query. Most tutorials on Transformer deployment in production are built over Pytorch and FastAPI....
    Downloads: 0 This Week
    Last Update:
    See Project