LLM Inference Tools for Linux

View 14 business solutions

Browse free open source LLM Inference tools and projects for Linux below. Use the toggles on the left to filter open source LLM Inference tools by OS, license, language, programming language, and project status.

  • Get Avast Free Antivirus | Your top-rated shield against malware and online scams Icon
    Get Avast Free Antivirus | Your top-rated shield against malware and online scams

    Boost your PC's defense against cyberthreats and web-based scams.

    Our antivirus software scans for security and performance issues and helps you to fix them instantly. It also protects you in real time by analyzing unknown files before they reach your desktop PC or laptop — all for free.
    Free Download
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1
    whisper.cpp

    whisper.cpp

    Port of OpenAI's Whisper model in C/C++

    High-performance inference of OpenAI's Whisper automatic speech recognition (ASR) model. Supported platforms: Mac OS (Intel and Arm) iOS Android Linux / FreeBSD WebAssembly Windows (MSVC and MinGW] Raspberry Pi
    Downloads: 348 This Week
    Last Update:
    See Project
  • 2
    GPT4All

    GPT4All

    Run Local LLMs on Any Device. Open-source

    GPT4All is an open-source project that allows users to run large language models (LLMs) locally on their desktops or laptops, eliminating the need for API calls or GPUs. The software provides a simple, user-friendly application that can be downloaded and run on various platforms, including Windows, macOS, and Ubuntu, without requiring specialized hardware. It integrates with the llama.cpp implementation and supports multiple LLMs, allowing users to interact with AI models privately. This project also supports Python integrations for easy automation and customization. GPT4All is ideal for individuals and businesses seeking private, offline access to powerful LLMs.
    Downloads: 90 This Week
    Last Update:
    See Project
  • 3
    ONNX Runtime

    ONNX Runtime

    ONNX Runtime: cross-platform, high performance ML inferencing

    ONNX Runtime is a cross-platform inference and training machine-learning accelerator. ONNX Runtime inference can enable faster customer experiences and lower costs, supporting models from deep learning frameworks such as PyTorch and TensorFlow/Keras as well as classical machine learning libraries such as scikit-learn, LightGBM, XGBoost, etc. ONNX Runtime is compatible with different hardware, drivers, and operating systems, and provides optimal performance by leveraging hardware accelerators where applicable alongside graph optimizations and transforms. ONNX Runtime training can accelerate the model training time on multi-node NVIDIA GPUs for transformer models with a one-line addition for existing PyTorch training scripts. Support for a variety of frameworks, operating systems and hardware platforms. Built-in optimizations that deliver up to 17X faster inferencing and up to 1.4X faster training.
    Downloads: 71 This Week
    Last Update:
    See Project
  • 4
    llama.cpp

    llama.cpp

    Port of Facebook's LLaMA model in C/C++

    The llama.cpp project enables the inference of Meta's LLaMA model (and other models) in pure C/C++ without requiring a Python runtime. It is designed for efficient and fast model execution, offering easy integration for applications needing LLM-based capabilities. The repository focuses on providing a highly optimized and portable implementation for running large language models directly within C/C++ environments.
    Downloads: 71 This Week
    Last Update:
    See Project
  • No-Nonsense Code-to-Cloud Security for Devs | Aikido Icon
    No-Nonsense Code-to-Cloud Security for Devs | Aikido

    Connect your GitHub, GitLab, Bitbucket, or Azure DevOps account to start scanning your repos for free.

    Aikido provides a unified security platform for developers, combining 12 powerful scans like SAST, DAST, and CSPM. AI-driven AutoFix and AutoTriage streamline vulnerability management, while runtime protection blocks attacks.
    Start for Free
  • 5
    ncnn

    ncnn

    High-performance neural network inference framework for mobile

    ncnn is a high-performance neural network inference computing framework designed specifically for mobile platforms. It brings artificial intelligence right at your fingertips with no third-party dependencies, and speeds faster than all other known open source frameworks for mobile phone cpu. ncnn allows developers to easily deploy deep learning algorithm models to the mobile platform and create intelligent APPs. It is cross-platform and supports most commonly used CNN networks, including Classical CNN (VGG AlexNet GoogleNet Inception), Face Detection (MTCNN RetinaFace), Segmentation (FCN PSPNet UNet YOLACT), and more. ncnn is currently being used in a number of Tencent applications, namely: QQ, Qzone, WeChat, and Pitu.
    Downloads: 70 This Week
    Last Update:
    See Project
  • 6
    ChatGLM.cpp

    ChatGLM.cpp

    C++ implementation of ChatGLM-6B & ChatGLM2-6B & ChatGLM3 & GLM4(V)

    ChatGLM.cpp is a C++ implementation of the ChatGLM-6B model, enabling efficient local inference without requiring a Python environment. It is optimized for running on consumer hardware.
    Downloads: 58 This Week
    Last Update:
    See Project
  • 7
    Open WebUI

    Open WebUI

    User-friendly AI Interface

    Open WebUI is an extensible, feature-rich, and user-friendly self-hosted AI platform designed to operate entirely offline. It supports various LLM runners like Ollama and OpenAI-compatible APIs, with a built-in inference engine for Retrieval Augmented Generation (RAG), making it a powerful AI deployment solution. Key features include effortless setup via Docker or Kubernetes, seamless integration with OpenAI-compatible APIs, granular permissions and user groups for enhanced security, responsive design across devices, and full Markdown and LaTeX support for enriched interactions. Additionally, Open WebUI offers a Progressive Web App (PWA) for mobile devices, providing offline access and a native app-like experience. The platform also includes a Model Builder, allowing users to create custom models from base Ollama models directly within the interface. With over 156,000 users, Open WebUI is a versatile solution for deploying and managing AI models in a secure, offline environment.
    Downloads: 50 This Week
    Last Update:
    See Project
  • 8
    Coqui STT

    Coqui STT

    The deep learning toolkit for speech-to-text

    Coqui STT is a fast, open-source, multi-platform, deep-learning toolkit for training and deploying speech-to-text models. Coqui STT is battle-tested in both production and research. Multiple possible transcripts, each with an associated confidence score. Experience the immediacy of script-to-performance. With Coqui text-to-speech, production times go from months to minutes. With Coqui, the post is a pleasure. Effortlessly clone the voices of your talent and have the clone handle the problems in post. With Coqui, dubbing is a delight. Effortlessly clone the voice of your talent into another language and let the clone do the dub. With text-to-speech, experience the immediacy of script-to-performance. Cast from a wide selection of high-quality, directable, emotive voices or clone a voice to suit your needs. With Coqui text-to-speech, production times go from months to minutes.
    Downloads: 42 This Week
    Last Update:
    See Project
  • 9
    Gitleaks

    Gitleaks

    Protect and discover secrets using Gitleaks

    Gitleaks is a fast, lightweight, portable, and open-source secret scanner for git repositories, files, and directories. With over 6.8 million docker downloads, 11.2k GitHub stars, 1.7 million GitHub Downloads, thousands of weekly clones, and over 400k homebrew installs, gitleaks is the most trusted secret scanner among security professionals, enterprises, and developers. Gitleaks-Action is our official GitHub Action. You can use it to automatically run a gitleaks scan on all your team's pull requests and commits, or run on-demand scans. If you are scanning repos that belong to a GitHub organization account, then you'll have to obtain a license. Gitleaks can be installed using Homebrew, Docker, or Go. Gitleaks is also available in binary form for many popular platforms and OS types on the releases page. In addition, Gitleaks can be implemented as a pre-commit hook directly in your repo or as a GitHub action using Gitleaks-Action.
    Downloads: 31 This Week
    Last Update:
    See Project
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    The database for AI-powered applications.

    MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
    Start Free
  • 10
    vLLM

    vLLM

    A high-throughput and memory-efficient inference and serving engine

    vLLM is a fast and easy-to-use library for LLM inference and serving. High-throughput serving with various decoding algorithms, including parallel sampling, beam search, and more.
    Downloads: 31 This Week
    Last Update:
    See Project
  • 11
    TensorRT

    TensorRT

    C++ library for high performance inference on NVIDIA GPUs

    NVIDIA® TensorRT™ is an SDK for high-performance deep learning inference. It includes a deep learning inference optimizer and runtime that delivers low latency and high throughput for deep learning inference applications. TensorRT-based applications perform up to 40X faster than CPU-only platforms during inference. With TensorRT, you can optimize neural network models trained in all major frameworks, calibrate for lower precision with high accuracy, and deploy to hyperscale data centers, embedded, or automotive product platforms. TensorRT is built on CUDA®, NVIDIA’s parallel programming model, and enables you to optimize inference leveraging libraries, development tools, and technologies in CUDA-X™ for artificial intelligence, autonomous machines, high-performance computing, and graphics. With new NVIDIA Ampere Architecture GPUs, TensorRT also leverages sparse tensor cores providing an additional performance boost.
    Downloads: 29 This Week
    Last Update:
    See Project
  • 12
    Seldon Core

    Seldon Core

    An MLOps framework to package, deploy, monitor and manage models

    The de facto standard open-source platform for rapidly deploying machine learning models on Kubernetes. Seldon Core, our open-source framework, makes it easier and faster to deploy your machine learning models and experiments at scale on Kubernetes. Seldon Core serves models built in any open-source or commercial model building framework. You can make use of powerful Kubernetes features like custom resource definitions to manage model graphs. And then connect your continuous integration and deployment (CI/CD) tools to scale and update your deployment. Built on Kubernetes, runs on any cloud and on-premises. Framework agnostic, supports top ML libraries, toolkits and languages. Advanced deployments with experiments, ensembles and transformers. Our open-source framework makes it easier and faster to deploy your machine learning models and experiments at scale on Kubernetes. The Kubeflow project is dedicated to making deployments of machine learning (ML) workflows on Kubernetes.
    Downloads: 25 This Week
    Last Update:
    See Project
  • 13
    LocalAI

    LocalAI

    Self-hosted, community-driven, local OpenAI compatible API

    Self-hosted, community-driven, local OpenAI compatible API. Drop-in replacement for OpenAI running LLMs on consumer-grade hardware. Free Open Source OpenAI alternative. No GPU is required. Runs ggml, GPTQ, onnx, TF compatible models: llama, gpt4all, rwkv, whisper, vicuna, koala, gpt4all-j, cerebras, falcon, dolly, starcoder, and many others. LocalAI is a drop-in replacement REST API that’s compatible with OpenAI API specifications for local inferencing. It allows you to run LLMs (and not only) locally or on-prem with consumer-grade hardware, supporting multiple model families that are compatible with the ggml format. Does not require GPU.
    Downloads: 24 This Week
    Last Update:
    See Project
  • 14
    OpenVINO

    OpenVINO

    OpenVINO™ Toolkit repository

    OpenVINO™ is an open-source toolkit for optimizing and deploying AI inference. Boost deep learning performance in computer vision, automatic speech recognition, natural language processing and other common tasks. Use models trained with popular frameworks like TensorFlow, PyTorch and more. Reduce resource demands and efficiently deploy on a range of Intel® platforms from edge to cloud. This open-source version includes several components: namely Model Optimizer, OpenVINO™ Runtime, Post-Training Optimization Tool, as well as CPU, GPU, MYRIAD, multi device and heterogeneous plugins to accelerate deep learning inferencing on Intel® CPUs and Intel® Processor Graphics. It supports pre-trained models from the Open Model Zoo, along with 100+ open source and public models in popular formats such as TensorFlow, ONNX, PaddlePaddle, MXNet, Caffe, Kaldi.
    Downloads: 24 This Week
    Last Update:
    See Project
  • 15
    MegEngine

    MegEngine

    Easy-to-use deep learning framework with 3 key features

    MegEngine is a fast, scalable and easy-to-use deep learning framework with 3 key features. You can represent quantization/dynamic shape/image pre-processing and even derivation in one model. After training, just put everything into your model and inference it on any platform at ease. Speed and precision problems won't bother you anymore due to the same core inside. In training, GPU memory usage could go down to one-third at the cost of only one additional line, which enables the DTR algorithm. Gain the lowest memory usage when inferencing a model by leveraging our unique pushdown memory planner. NOTE: MegEngine now supports Python installation on Linux-64bit/Windows-64bit/MacOS(CPU-Only)-10.14+/Android 7+(CPU-Only) platforms with Python from 3.5 to 3.8. On Windows 10 you can either install the Linux distribution through Windows Subsystem for Linux (WSL) or install the Windows distribution directly. Many other platforms are supported for inference.
    Downloads: 23 This Week
    Last Update:
    See Project
  • 16
    RWKV Runner

    RWKV Runner

    A RWKV management and startup tool, full automation, only 8MB

    RWKV (pronounced as RwaKuv) is an RNN with GPT-level LLM performance, which can also be directly trained like a GPT transformer (parallelizable). So it's combining the best of RNN and transformer - great performance, fast inference, fast training, saves VRAM, "infinite" ctxlen, and free text embedding. Moreover it's 100% attention-free. Default configs has enabled custom CUDA kernel acceleration, which is much faster and consumes much less VRAM. If you encounter possible compatibility issues, go to the Configs page and turn off Use Custom CUDA kernel to Accelerate.
    Downloads: 23 This Week
    Last Update:
    See Project
  • 17
    DeepSparse

    DeepSparse

    Sparsity-aware deep learning inference runtime for CPUs

    A sparsity-aware enterprise inferencing system for AI models on CPUs. Maximize your CPU infrastructure with DeepSparse to run performant computer vision (CV), natural language processing (NLP), and large language models (LLMs).
    Downloads: 17 This Week
    Last Update:
    See Project
  • 18
    OpenMLDB

    OpenMLDB

    OpenMLDB is an open-source machine learning database

    OpenMLDB is an open-source machine learning database that provides a feature platform computing consistent features for training and inference. OpenMLDB is an open-source machine learning database that is committed to solving the data and feature challenges. OpenMLDB has been deployed in hundreds of real-world enterprise applications. It prioritizes the capability of feature engineering using SQL for open-source, which offers a feature platform enabling consistent features for training and inference. Real-time features are essential for many machine learning applications, such as real-time personalized recommendations and risk analytics. However, a feature engineering script developed by data scientists (Python scripts in most cases) cannot be directly deployed into production for online inference because it usually cannot meet the engineering requirements, such as low latency, high throughput and high availability.
    Downloads: 16 This Week
    Last Update:
    See Project
  • 19
    AIMET

    AIMET

    AIMET is a library that provides advanced quantization and compression

    Qualcomm Innovation Center (QuIC) is at the forefront of enabling low-power inference at the edge through its pioneering model-efficiency research. QuIC has a mission to help migrate the ecosystem toward fixed-point inference. With this goal, QuIC presents the AI Model Efficiency Toolkit (AIMET) - a library that provides advanced quantization and compression techniques for trained neural network models. AIMET enables neural networks to run more efficiently on fixed-point AI hardware accelerators. Quantized inference is significantly faster than floating point inference. For example, models that we’ve run on the Qualcomm® Hexagon™ DSP rather than on the Qualcomm® Kryo™ CPU have resulted in a 5x to 15x speedup. Plus, an 8-bit model also has a 4x smaller memory footprint relative to a 32-bit model. However, often when quantizing a machine learning model (e.g., from 32-bit floating point to an 8-bit fixed point value), the model accuracy is sacrificed.
    Downloads: 15 This Week
    Last Update:
    See Project
  • 20
    MNN

    MNN

    MNN is a blazing fast, lightweight deep learning framework

    MNN is a highly efficient and lightweight deep learning framework. It supports inference and training of deep learning models, and has industry leading performance for inference and training on-device. At present, MNN has been integrated in more than 20 apps of Alibaba Inc, such as Taobao, Tmall, Youku, Dingtalk, Xianyu and etc., covering more than 70 usage scenarios such as live broadcast, short video capture, search recommendation, product searching by image, interactive marketing, equity distribution, security risk control. In addition, MNN is also used on embedded devices, such as IoT. MNN Workbench could be downloaded from MNN's homepage, which provides pretrained models, visualized training tools, and one-click deployment of models to devices. Android platform, core so size is about 400KB, OpenCL so is about 400KB, Vulkan so is about 400KB. Supports hybrid computing on multiple devices. Currently supports CPU and GPU.
    Downloads: 15 This Week
    Last Update:
    See Project
  • 21
    FlashInfer

    FlashInfer

    FlashInfer: Kernel Library for LLM Serving

    FlashInfer is a kernel library designed to enhance the serving of Large Language Models (LLMs) by optimizing inference performance. It provides a high-performance framework that integrates seamlessly with existing systems, aiming to reduce latency and improve efficiency in LLM deployments. FlashInfer supports various hardware architectures and is built to scale with the demands of production environments.
    Downloads: 14 This Week
    Last Update:
    See Project
  • 22
    Superduper

    Superduper

    Superduper: Integrate AI models and machine learning workflows

    Superduper is a Python-based framework for building end-2-end AI-data workflows and applications on your own data, integrating with major databases. It supports the latest technologies and techniques, including LLMs, vector-search, RAG, and multimodality as well as classical AI and ML paradigms. Developers may leverage Superduper by building compositional and declarative objects that out-source the details of deployment, orchestration versioning, and more to the Superduper engine. This allows developers to completely avoid implementing MLOps, ETL pipelines, model deployment, data migration, and synchronization. Using Superduper is simply "CAPE": Connect to your data, apply arbitrary AI to that data, package and reuse the application on arbitrary data, and execute AI-database queries and predictions on the resulting AI outputs and data.
    Downloads: 14 This Week
    Last Update:
    See Project
  • 23
    Eko

    Eko

    Build Production-ready Agentic Workflow with Natural Language

    Eko (Eko Keeps Operating) is a JavaScript framework designed for building production-ready agent-based workflows using natural language commands. It allows developers to create automated agents that can handle complex workflows in both computer and browser environments. With a focus on high development efficiency, Eko simplifies the creation of multi-step workflows, enabling users to integrate and automate tasks across platforms. It provides a unified interface for managing agents, offering features such as web resource access and high task complexity handling. Eko is open-source and can be used to execute tasks like browser automation, system operations, and software testing.
    Downloads: 12 This Week
    Last Update:
    See Project
  • 24
    SuperDuperDB

    SuperDuperDB

    Integrate, train and manage any AI models and APIs with your database

    Build and manage AI applications easily without needing to move your data to complex pipelines and specialized vector databases. Integrate AI and vector search directly with your database including real-time inference and model training. Just using Python. A single scalable deployment of all your AI models and APIs which is automatically kept up-to-date as new data is processed immediately. No need to introduce an additional database and duplicate your data to use vector search and build on top of it. SuperDuperDB enables vector search in your existing database. Integrate and combine models from Sklearn, PyTorch, HuggingFace with AI APIs such as OpenAI to build even the most complex AI applications and workflows. Train models on your data in your datastore simply by querying without additional ingestion and pre-processing.
    Downloads: 12 This Week
    Last Update:
    See Project
  • 25
    rwkv.cpp

    rwkv.cpp

    INT4/INT5/INT8 and FP16 inference on CPU for RWKV language model

    Besides the usual FP32, it supports FP16, quantized INT4, INT5 and INT8 inference. This project is focused on CPU, but cuBLAS is also supported. RWKV is a novel large language model architecture, with the largest model in the family having 14B parameters. In contrast to Transformer with O(n^2) attention, RWKV requires only state from the previous step to calculate logits. This makes RWKV very CPU-friendly on large context lengths.
    Downloads: 12 This Week
    Last Update:
    See Project
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.