3 projects for "using" with 2 filters applied:

  • Outgrown Windows Task Scheduler? Icon
    Outgrown Windows Task Scheduler?

    Free diagnostic identifies where your workflow is breaking down—with instant analysis of your scheduling environment.

    Windows Task Scheduler wasn't built for complex, cross-platform automation. Get a free diagnostic that shows exactly where things are failing and provides remediation recommendations. Interactive HTML report delivered in minutes.
    Download Free Tool
  • AI-generated apps that pass security review Icon
    AI-generated apps that pass security review

    Stop waiting on engineering. Build production-ready internal tools with AI—on your company data, in your cloud.

    Retool lets you generate dashboards, admin panels, and workflows directly on your data. Type something like “Build me a revenue dashboard on my Stripe data” and get a working app with security, permissions, and compliance built in from day one. Whether on our cloud or self-hosted, create the internal software your team needs without compromising enterprise standards or control.
    Try Retool free
  • 1
    Open WebUI

    Open WebUI

    User-friendly AI Interface

    Open WebUI is an extensible, feature-rich, and user-friendly self-hosted AI platform designed to operate entirely offline. It supports various LLM runners like Ollama and OpenAI-compatible APIs, with a built-in inference engine for Retrieval Augmented Generation (RAG), making it a powerful AI deployment solution. Key features include effortless setup via Docker or Kubernetes, seamless integration with OpenAI-compatible APIs, granular permissions and user groups for enhanced security,...
    Downloads: 96 This Week
    Last Update:
    See Project
  • 2
    Phi-3-MLX

    Phi-3-MLX

    Phi-3.5 for Mac: Locally-run Vision and Language Models

    Phi-3-Vision-MLX is an Apple MLX (machine learning on Apple silicon) implementation of Phi-3 Vision, a lightweight multi-modal model designed for vision and language tasks. It focuses on running vision-language AI efficiently on Apple hardware like M1 and M2 chips.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Superduper

    Superduper

    Superduper: Integrate AI models and machine learning workflows

    ...Developers may leverage Superduper by building compositional and declarative objects that out-source the details of deployment, orchestration versioning, and more to the Superduper engine. This allows developers to completely avoid implementing MLOps, ETL pipelines, model deployment, data migration, and synchronization. Using Superduper is simply "CAPE": Connect to your data, apply arbitrary AI to that data, package and reuse the application on arbitrary data, and execute AI-database queries and predictions on the resulting AI outputs and data.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next