Showing 34 open source projects for "linux-kernel-webassembly"

View related business solutions
  • Retool your internal operations Icon
    Retool your internal operations

    Generate secure, production-grade apps that connect to your business data. Not just prototypes, but tools your team can actually deploy.

    Build internal software that meets enterprise security standards without waiting on engineering resources. Retool connects to your databases, APIs, and data sources while maintaining the permissions and controls you need. Create custom dashboards, admin tools, and workflows from natural language prompts—all deployed in your cloud with security baked in. Stop duct-taping operations together, start building in Retool.
    Build an app in Retool
  • Find Hidden Risks in Windows Task Scheduler Icon
    Find Hidden Risks in Windows Task Scheduler

    Free diagnostic script reveals configuration issues, error patterns, and security risks. Instant HTML report.

    Windows Task Scheduler might be hiding critical failures. Download the free JAMS diagnostic tool to uncover problems before they impact production—get a color-coded risk report with clear remediation steps in minutes.
    Download Free Tool
  • 1
    TensorRT

    TensorRT

    C++ library for high performance inference on NVIDIA GPUs

    NVIDIA® TensorRT™ is an SDK for high-performance deep learning inference. It includes a deep learning inference optimizer and runtime that delivers low latency and high throughput for deep learning inference applications. TensorRT-based applications perform up to 40X faster than CPU-only platforms during inference. With TensorRT, you can optimize neural network models trained in all major frameworks, calibrate for lower precision with high accuracy, and deploy to hyperscale data centers,...
    Downloads: 17 This Week
    Last Update:
    See Project
  • 2
    whisper.cpp

    whisper.cpp

    Port of OpenAI's Whisper model in C/C++

    whisper.cpp is a lightweight, C/C++ reimplementation of OpenAI’s Whisper automatic speech recognition (ASR) model—designed for efficient, standalone transcription without external dependencies. The entire high-level implementation of the model is contained in whisper.h and whisper.cpp. The rest of the code is part of the ggml machine learning library. The command downloads the base.en model converted to custom ggml format and runs the inference on all .wav samples in the folder samples....
    Downloads: 444 This Week
    Last Update:
    See Project
  • 3
    llama.cpp

    llama.cpp

    Port of Facebook's LLaMA model in C/C++

    The llama.cpp project enables the inference of Meta's LLaMA model (and other models) in pure C/C++ without requiring a Python runtime. It is designed for efficient and fast model execution, offering easy integration for applications needing LLM-based capabilities. The repository focuses on providing a highly optimized and portable implementation for running large language models directly within C/C++ environments.
    Downloads: 122 This Week
    Last Update:
    See Project
  • 4
    GPT4All

    GPT4All

    Run Local LLMs on Any Device. Open-source

    GPT4All is an open-source project that allows users to run large language models (LLMs) locally on their desktops or laptops, eliminating the need for API calls or GPUs. The software provides a simple, user-friendly application that can be downloaded and run on various platforms, including Windows, macOS, and Ubuntu, without requiring specialized hardware. It integrates with the llama.cpp implementation and supports multiple LLMs, allowing users to interact with AI models privately. This...
    Downloads: 127 This Week
    Last Update:
    See Project
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • 5
    ONNX Runtime

    ONNX Runtime

    ONNX Runtime: cross-platform, high performance ML inferencing

    ONNX Runtime is a cross-platform inference and training machine-learning accelerator. ONNX Runtime inference can enable faster customer experiences and lower costs, supporting models from deep learning frameworks such as PyTorch and TensorFlow/Keras as well as classical machine learning libraries such as scikit-learn, LightGBM, XGBoost, etc. ONNX Runtime is compatible with different hardware, drivers, and operating systems, and provides optimal performance by leveraging hardware accelerators...
    Downloads: 52 This Week
    Last Update:
    See Project
  • 6
    ncnn

    ncnn

    High-performance neural network inference framework for mobile

    ncnn is a high-performance neural network inference computing framework designed specifically for mobile platforms. It brings artificial intelligence right at your fingertips with no third-party dependencies, and speeds faster than all other known open source frameworks for mobile phone cpu. ncnn allows developers to easily deploy deep learning algorithm models to the mobile platform and create intelligent APPs. It is cross-platform and supports most commonly used CNN networks, including...
    Downloads: 30 This Week
    Last Update:
    See Project
  • 7
    OpenVINO

    OpenVINO

    OpenVINO™ Toolkit repository

    OpenVINO™ is an open-source toolkit for optimizing and deploying AI inference. Boost deep learning performance in computer vision, automatic speech recognition, natural language processing and other common tasks. Use models trained with popular frameworks like TensorFlow, PyTorch and more. Reduce resource demands and efficiently deploy on a range of Intel® platforms from edge to cloud. This open-source version includes several components: namely Model Optimizer, OpenVINO™ Runtime,...
    Downloads: 28 This Week
    Last Update:
    See Project
  • 8
    MNN

    MNN

    MNN is a blazing fast, lightweight deep learning framework

    MNN is a highly efficient and lightweight deep learning framework. It supports inference and training of deep learning models, and has industry leading performance for inference and training on-device. At present, MNN has been integrated in more than 20 apps of Alibaba Inc, such as Taobao, Tmall, Youku, Dingtalk, Xianyu and etc., covering more than 70 usage scenarios such as live broadcast, short video capture, search recommendation, product searching by image, interactive marketing, equity...
    Downloads: 16 This Week
    Last Update:
    See Project
  • 9
    Distributed Llama

    Distributed Llama

    Connect home devices into a powerful cluster to accelerate LLM

    ...By leveraging tensor parallelism and high-speed synchronization over Ethernet, it allows for faster performance as more devices are added to the cluster. The system supports various operating systems, including Linux, macOS, and Windows, and is optimized for both ARM and x86_64 AVX2 CPUs.
    Downloads: 4 This Week
    Last Update:
    See Project
  • Desktop and Mobile Device Management Software Icon
    Desktop and Mobile Device Management Software

    It's a modern take on desktop management that can be scaled as per organizational needs.

    Desktop Central is a unified endpoint management (UEM) solution that helps in managing servers, laptops, desktops, smartphones, and tablets from a central location.
    Learn More
  • 10
    ChatLLM.cpp

    ChatLLM.cpp

    Pure C++ implementation of several models for real-time chatting

    chatllm.cpp is a pure C++ implementation designed for real-time chatting with Large Language Models (LLMs) on personal computers, supporting both CPU and GPU executions. It enables users to run various LLMs ranging from less than 1 billion to over 300 billion parameters, facilitating responsive and efficient conversational AI experiences without relying on external servers.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 11
    Lean Copilot

    Lean Copilot

    LLMs as Copilots for Theorem Proving in Lean

    LeanCopilot integrates large language models (LLMs) as copilots for theorem proving in the Lean proof assistant. It assists users by suggesting tactics, premises, and searching for proofs, thereby enhancing the efficiency of formal verification processes. LeanCopilot supports both built-in models from LeanDojo and custom models, offering flexibility for various use cases.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 12
    ONNX

    ONNX

    Open standard for machine learning interoperability

    ONNX is an open format built to represent machine learning models. ONNX defines a common set of operators - the building blocks of machine learning and deep learning models - and a common file format to enable AI developers to use models with a variety of frameworks, tools, runtimes, and compilers. Open Neural Network Exchange (ONNX) is an open ecosystem that empowers AI developers to choose the right tools as their project evolves. ONNX provides an open source format for AI models, both...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 13
    ChatGLM.cpp

    ChatGLM.cpp

    C++ implementation of ChatGLM-6B & ChatGLM2-6B & ChatGLM3 & GLM4(V)

    ChatGLM.cpp is a C++ implementation of the ChatGLM-6B model, enabling efficient local inference without requiring a Python environment. It is optimized for running on consumer hardware.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 14
    PaddlePaddle

    PaddlePaddle

    PArallel Distributed Deep LEarning: Machine Learning Framework

    PaddlePaddle is an open source deep learning industrial platform with advanced technologies and a rich set of features that make innovation and application of deep learning easier. It is the only independent R&D deep learning platform in China, and has been widely adopted in various sectors including manufacturing, agriculture and enterprise service. PaddlePaddle covers core deep learning frameworks, basic model libraries, end-to-end development kits and more, with support for both...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 15
    MegEngine

    MegEngine

    Easy-to-use deep learning framework with 3 key features

    ...In training, GPU memory usage could go down to one-third at the cost of only one additional line, which enables the DTR algorithm. Gain the lowest memory usage when inferencing a model by leveraging our unique pushdown memory planner. NOTE: MegEngine now supports Python installation on Linux-64bit/Windows-64bit/MacOS(CPU-Only)-10.14+/Android 7+(CPU-Only) platforms with Python from 3.5 to 3.8. On Windows 10 you can either install the Linux distribution through Windows Subsystem for Linux (WSL) or install the Windows distribution directly. Many other platforms are supported for inference.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 16
    CTranslate2

    CTranslate2

    Fast inference engine for Transformer models

    CTranslate2 is a C++ and Python library for efficient inference with Transformer models. The project implements a custom runtime that applies many performance optimization techniques such as weights quantization, layers fusion, batch reordering, etc., to accelerate and reduce the memory usage of Transformer models on CPU and GPU. The execution is significantly faster and requires less resources than general-purpose deep learning frameworks on supported models and tasks thanks to many...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 17
    rwkv.cpp

    rwkv.cpp

    INT4/INT5/INT8 and FP16 inference on CPU for RWKV language model

    Besides the usual FP32, it supports FP16, quantized INT4, INT5 and INT8 inference. This project is focused on CPU, but cuBLAS is also supported. RWKV is a novel large language model architecture, with the largest model in the family having 14B parameters. In contrast to Transformer with O(n^2) attention, RWKV requires only state from the previous step to calculate logits. This makes RWKV very CPU-friendly on large context lengths.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Neural Speed

    Neural Speed

    An innovative library for efficient LLM inference

    neural-speed is an innovative library developed by Intel to enhance the efficiency of Large Language Model (LLM) inference through low-bit quantization techniques. By reducing the precision of model weights and activations, neural-speed aims to accelerate inference while maintaining model accuracy, making it suitable for deployment in resource-constrained environments.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    gemma.cpp

    gemma.cpp

    lightweight, standalone C++ inference engine for Google's Gemma models

    Gemma.cpp is a C++ implementation for running inference with Gemma models efficiently on CPUs and GPUs. Developed by Google, it allows running large language models (LLMs) like Gemma with minimal hardware, focusing on optimized performance and low latency. Gemma.cpp is intended for developers seeking to deploy LLMs in production environments without needing massive computational resources.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    ExecuTorch

    ExecuTorch

    On-device AI across mobile, embedded and edge for PyTorch

    ExecuTorch is an end-to-end solution for enabling on-device inference capabilities across mobile and edge devices including wearables, embedded devices and microcontrollers. It is part of the PyTorch Edge ecosystem and enables efficient deployment of PyTorch models to edge devices.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Bolt NLP

    Bolt NLP

    Bolt is a deep learning library with high performance

    Bolt is a high-performance deep learning inference framework developed by Huawei Noah's Ark Lab. It is designed to optimize and accelerate the deployment of deep learning models across various hardware platforms. Bolt is a light-weight library for deep learning. Bolt, as a universal deployment tool for all kinds of neural networks, aims to automate the deployment pipeline and achieve extreme acceleration. Bolt has been widely deployed and used in many departments of HUAWEI company, such as...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    OpenMLDB

    OpenMLDB

    OpenMLDB is an open-source machine learning database

    OpenMLDB is an open-source machine learning database that provides a feature platform computing consistent features for training and inference. OpenMLDB is an open-source machine learning database that is committed to solving the data and feature challenges. OpenMLDB has been deployed in hundreds of real-world enterprise applications. It prioritizes the capability of feature engineering using SQL for open-source, which offers a feature platform enabling consistent features for training and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    OpenVINO Model Server

    OpenVINO Model Server

    A scalable inference server for models optimized with OpenVINO

    OpenVINO™ Model Server is a high-performance inference serving system designed to host and serve machine learning models that have been optimized with the OpenVINO toolkit. It’s implemented in C++ for scalability and efficiency, making it suitable for both edge and cloud deployments where inference workloads must be reliable and high throughput. The server exposes model inference via standard network protocols like REST and gRPC, allowing any client that speaks those protocols to request...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    DALI

    DALI

    A GPU-accelerated library containing highly optimized building blocks

    The NVIDIA Data Loading Library (DALI) is a library for data loading and pre-processing to accelerate deep learning applications. It provides a collection of highly optimized building blocks for loading and processing image, video and audio data. It can be used as a portable drop-in replacement for built-in data loaders and data iterators in popular deep learning frameworks. Deep learning applications require complex, multi-stage data processing pipelines that include loading, decoding,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    TensorFlow Serving

    TensorFlow Serving

    Serving system for machine learning models

    TensorFlow Serving is a flexible, high-performance serving system for machine learning models, designed for production environments. It deals with the inference aspect of machine learning, taking models after training and managing their lifetimes, providing clients with versioned access via a high-performance, reference-counted lookup table. TensorFlow Serving provides out-of-the-box integration with TensorFlow models, but can be easily extended to serve other types of models and data. The...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • Next