Showing 2 open source projects for "layer"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • AI-generated apps that pass security review Icon
    AI-generated apps that pass security review

    Stop waiting on engineering. Build production-ready internal tools with AI—on your company data, in your cloud.

    Retool lets you generate dashboards, admin panels, and workflows directly on your data. Type something like “Build me a revenue dashboard on my Stripe data” and get a working app with security, permissions, and compliance built in from day one. Whether on our cloud or self-hosted, create the internal software your team needs without compromising enterprise standards or control.
    Try Retool free
  • 1
    ncnn

    ncnn

    High-performance neural network inference framework for mobile

    ncnn is a high-performance neural network inference computing framework designed specifically for mobile platforms. It brings artificial intelligence right at your fingertips with no third-party dependencies, and speeds faster than all other known open source frameworks for mobile phone cpu. ncnn allows developers to easily deploy deep learning algorithm models to the mobile platform and create intelligent APPs. It is cross-platform and supports most commonly used CNN networks, including...
    Downloads: 35 This Week
    Last Update:
    See Project
  • 2
    CTranslate2

    CTranslate2

    Fast inference engine for Transformer models

    ...The execution is significantly faster and requires less resources than general-purpose deep learning frameworks on supported models and tasks thanks to many advanced optimizations: layer fusion, padding removal, batch reordering, in-place operations, caching mechanism, etc. The model serialization and computation support weights with reduced precision: 16-bit floating points (FP16), 16-bit integers (INT16), and 8-bit integers (INT8). The project supports x86-64 and AArch64/ARM64 processors and integrates multiple backends that are optimized for these platforms: Intel MKL, oneDNN, OpenBLAS, Ruy, and Apple Accelerate.
    Downloads: 3 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next