Showing 34 open source projects for "artificial intelligence python"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Field Service+ for MS Dynamics 365 & Salesforce Icon
    Field Service+ for MS Dynamics 365 & Salesforce

    Empower your field service with mobility and reliability

    Resco’s mobile solution streamlines your field service operations with offline work, fast data sync, and powerful tools for frontline workers, all natively integrated into Dynamics 365 and Salesforce.
    Learn More
  • 1
    llama.cpp

    llama.cpp

    Port of Facebook's LLaMA model in C/C++

    The llama.cpp project enables the inference of Meta's LLaMA model (and other models) in pure C/C++ without requiring a Python runtime. It is designed for efficient and fast model execution, offering easy integration for applications needing LLM-based capabilities. The repository focuses on providing a highly optimized and portable implementation for running large language models directly within C/C++ environments.
    Downloads: 90 This Week
    Last Update:
    See Project
  • 2
    GPT4All

    GPT4All

    Run Local LLMs on Any Device. Open-source

    GPT4All is an open-source project that allows users to run large language models (LLMs) locally on their desktops or laptops, eliminating the need for API calls or GPUs. The software provides a simple, user-friendly application that can be downloaded and run on various platforms, including Windows, macOS, and Ubuntu, without requiring specialized hardware. It integrates with the llama.cpp implementation and supports multiple LLMs, allowing users to interact with AI models privately. This...
    Downloads: 202 This Week
    Last Update:
    See Project
  • 3
    ChatGLM.cpp

    ChatGLM.cpp

    C++ implementation of ChatGLM-6B & ChatGLM2-6B & ChatGLM3 & GLM4(V)

    ChatGLM.cpp is a C++ implementation of the ChatGLM-6B model, enabling efficient local inference without requiring a Python environment. It is optimized for running on consumer hardware.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 4
    rwkv.cpp

    rwkv.cpp

    INT4/INT5/INT8 and FP16 inference on CPU for RWKV language model

    Besides the usual FP32, it supports FP16, quantized INT4, INT5 and INT8 inference. This project is focused on CPU, but cuBLAS is also supported. RWKV is a novel large language model architecture, with the largest model in the family having 14B parameters. In contrast to Transformer with O(n^2) attention, RWKV requires only state from the previous step to calculate logits. This makes RWKV very CPU-friendly on large context lengths.
    Downloads: 1 This Week
    Last Update:
    See Project
  • Dominate AI Search Results Icon
    Dominate AI Search Results

    Generative Al is shaping brand discovery. AthenaHQ ensures your brand leads the conversation.

    AthenaHQ is a cutting-edge platform for Generative Engine Optimization (GEO), designed to help brands optimize their visibility and performance across AI-driven search platforms like ChatGPT, Google AI, and more.
    Learn More
  • 5
    PaddleSpeech

    PaddleSpeech

    Easy-to-use Speech Toolkit including Self-Supervised Learning model

    PaddleSpeech is an open-source toolkit on PaddlePaddle platform for a variety of critical tasks in speech and audio, with state-of-art and influential models. Via the easy-to-use, efficient, flexible and scalable implementation, our vision is to empower both industrial application and academic research, including training, inference & testing modules, and deployment process. Low barriers to install, CLI, Server, and Streaming Server is available to quick-start your journey. We provide...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 6
    whisper.cpp

    whisper.cpp

    Port of OpenAI's Whisper model in C/C++

    whisper.cpp is a lightweight, C/C++ reimplementation of OpenAI’s Whisper automatic speech recognition (ASR) model—designed for efficient, standalone transcription without external dependencies. The entire high-level implementation of the model is contained in whisper.h and whisper.cpp. The rest of the code is part of the ggml machine learning library. The command downloads the base.en model converted to custom ggml format and runs the inference on all .wav samples in the folder samples....
    Downloads: 539 This Week
    Last Update:
    See Project
  • 7
    OpenVINO

    OpenVINO

    OpenVINO™ Toolkit repository

    OpenVINO™ is an open-source toolkit for optimizing and deploying AI inference. Boost deep learning performance in computer vision, automatic speech recognition, natural language processing and other common tasks. Use models trained with popular frameworks like TensorFlow, PyTorch and more. Reduce resource demands and efficiently deploy on a range of Intel® platforms from edge to cloud. This open-source version includes several components: namely Model Optimizer, OpenVINO™ Runtime,...
    Downloads: 32 This Week
    Last Update:
    See Project
  • 8
    MegEngine

    MegEngine

    Easy-to-use deep learning framework with 3 key features

    MegEngine is a fast, scalable and easy-to-use deep learning framework with 3 key features. You can represent quantization/dynamic shape/image pre-processing and even derivation in one model. After training, just put everything into your model and inference it on any platform at ease. Speed and precision problems won't bother you anymore due to the same core inside. In training, GPU memory usage could go down to one-third at the cost of only one additional line, which enables the DTR...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 9
    CTranslate2

    CTranslate2

    Fast inference engine for Transformer models

    CTranslate2 is a C++ and Python library for efficient inference with Transformer models. The project implements a custom runtime that applies many performance optimization techniques such as weights quantization, layers fusion, batch reordering, etc., to accelerate and reduce the memory usage of Transformer models on CPU and GPU. The execution is significantly faster and requires less resources than general-purpose deep learning frameworks on supported models and tasks thanks to many...
    Downloads: 8 This Week
    Last Update:
    See Project
  • Dun and Bradstreet Connect simplifies the complex burden of data management Icon
    Dun and Bradstreet Connect simplifies the complex burden of data management

    Our self-service data management platform enables your organization to gain a complete and accurate view of your accounts and contacts.

    The amount, speed, and types of data created in today’s world can be overwhelming. With D&B Connect, you can instantly benchmark, enrich, and monitor your data against the Dun & Bradstreet Data Cloud to help ensure your systems of record have trusted data to fuel growth.
    Learn More
  • 10
    DALI

    DALI

    A GPU-accelerated library containing highly optimized building blocks

    The NVIDIA Data Loading Library (DALI) is a library for data loading and pre-processing to accelerate deep learning applications. It provides a collection of highly optimized building blocks for loading and processing image, video and audio data. It can be used as a portable drop-in replacement for built-in data loaders and data iterators in popular deep learning frameworks. Deep learning applications require complex, multi-stage data processing pipelines that include loading, decoding,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    ONNX Runtime

    ONNX Runtime

    ONNX Runtime: cross-platform, high performance ML inferencing

    ONNX Runtime is a cross-platform inference and training machine-learning accelerator. ONNX Runtime inference can enable faster customer experiences and lower costs, supporting models from deep learning frameworks such as PyTorch and TensorFlow/Keras as well as classical machine learning libraries such as scikit-learn, LightGBM, XGBoost, etc. ONNX Runtime is compatible with different hardware, drivers, and operating systems, and provides optimal performance by leveraging hardware accelerators...
    Downloads: 33 This Week
    Last Update:
    See Project
  • 12
    ncnn

    ncnn

    High-performance neural network inference framework for mobile

    ncnn is a high-performance neural network inference computing framework designed specifically for mobile platforms. It brings artificial intelligence right at your fingertips with no third-party dependencies, and speeds faster than all other known open source frameworks for mobile phone cpu. ncnn allows developers to easily deploy deep learning algorithm models to the mobile platform and create intelligent APPs. It is cross-platform and supports most commonly used CNN networks, including Classical CNN (VGG AlexNet GoogleNet Inception), Face Detection (MTCNN RetinaFace), Segmentation (FCN PSPNet UNet YOLACT), and more. ncnn is currently being used in a number of Tencent applications, namely: QQ, Qzone, WeChat, and Pitu.
    Downloads: 23 This Week
    Last Update:
    See Project
  • 13
    PaddlePaddle

    PaddlePaddle

    PArallel Distributed Deep LEarning: Machine Learning Framework

    PaddlePaddle is an open source deep learning industrial platform with advanced technologies and a rich set of features that make innovation and application of deep learning easier. It is the only independent R&D deep learning platform in China, and has been widely adopted in various sectors including manufacturing, agriculture and enterprise service. PaddlePaddle covers core deep learning frameworks, basic model libraries, end-to-end development kits and more, with support for both...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 14
    TensorRT

    TensorRT

    C++ library for high performance inference on NVIDIA GPUs

    ...TensorRT is built on CUDA®, NVIDIA’s parallel programming model, and enables you to optimize inference leveraging libraries, development tools, and technologies in CUDA-X™ for artificial intelligence, autonomous machines, high-performance computing, and graphics. With new NVIDIA Ampere Architecture GPUs, TensorRT also leverages sparse tensor cores providing an additional performance boost.
    Downloads: 15 This Week
    Last Update:
    See Project
  • 15
    OpenMLDB

    OpenMLDB

    OpenMLDB is an open-source machine learning database

    OpenMLDB is an open-source machine learning database that provides a feature platform computing consistent features for training and inference. OpenMLDB is an open-source machine learning database that is committed to solving the data and feature challenges. OpenMLDB has been deployed in hundreds of real-world enterprise applications. It prioritizes the capability of feature engineering using SQL for open-source, which offers a feature platform enabling consistent features for training and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    ONNX

    ONNX

    Open standard for machine learning interoperability

    ONNX is an open format built to represent machine learning models. ONNX defines a common set of operators - the building blocks of machine learning and deep learning models - and a common file format to enable AI developers to use models with a variety of frameworks, tools, runtimes, and compilers. Open Neural Network Exchange (ONNX) is an open ecosystem that empowers AI developers to choose the right tools as their project evolves. ONNX provides an open source format for AI models, both...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 17
    Lean Copilot

    Lean Copilot

    LLMs as Copilots for Theorem Proving in Lean

    LeanCopilot integrates large language models (LLMs) as copilots for theorem proving in the Lean proof assistant. It assists users by suggesting tactics, premises, and searching for proofs, thereby enhancing the efficiency of formal verification processes. LeanCopilot supports both built-in models from LeanDojo and custom models, offering flexibility for various use cases.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 18
    DeepDetect

    DeepDetect

    Deep Learning API and Server in C++14 support for Caffe, PyTorch

    The core idea is to remove the error sources and difficulties of Deep Learning applications by providing a safe haven of commoditized practices, all available as a single core. While the Open Source Deep Learning Server is the core element, with REST API, and multi-platform support that allows training & inference everywhere, the Deep Learning Platform allows higher level management for training neural network models and using them as if they were simple code snippets. Ready for applications...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    ExecuTorch

    ExecuTorch

    On-device AI across mobile, embedded and edge for PyTorch

    ExecuTorch is an end-to-end solution for enabling on-device inference capabilities across mobile and edge devices including wearables, embedded devices and microcontrollers. It is part of the PyTorch Edge ecosystem and enables efficient deployment of PyTorch models to edge devices.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    OnnxStream

    OnnxStream

    Lightweight inference library for ONNX files, written in C++

    The challenge is to run Stable Diffusion 1.5, which includes a large transformer model with almost 1 billion parameters, on a Raspberry Pi Zero 2, which is a microcomputer with 512MB of RAM, without adding more swap space and without offloading intermediate results on disk. The recommended minimum RAM/VRAM for Stable Diffusion 1.5 is typically 8GB. Generally, major machine learning frameworks and libraries are focused on minimizing inference latency and/or maximizing throughput, all of which...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 21
    Bolt NLP

    Bolt NLP

    Bolt is a deep learning library with high performance

    Bolt is a high-performance deep learning inference framework developed by Huawei Noah's Ark Lab. It is designed to optimize and accelerate the deployment of deep learning models across various hardware platforms. Bolt is a light-weight library for deep learning. Bolt, as a universal deployment tool for all kinds of neural networks, aims to automate the deployment pipeline and achieve extreme acceleration. Bolt has been widely deployed and used in many departments of HUAWEI company, such as...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Neural Speed

    Neural Speed

    An innovative library for efficient LLM inference

    neural-speed is an innovative library developed by Intel to enhance the efficiency of Large Language Model (LLM) inference through low-bit quantization techniques. By reducing the precision of model weights and activations, neural-speed aims to accelerate inference while maintaining model accuracy, making it suitable for deployment in resource-constrained environments.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    gemma.cpp

    gemma.cpp

    lightweight, standalone C++ inference engine for Google's Gemma models

    Gemma.cpp is a C++ implementation for running inference with Gemma models efficiently on CPUs and GPUs. Developed by Google, it allows running large language models (LLMs) like Gemma with minimal hardware, focusing on optimized performance and low latency. Gemma.cpp is intended for developers seeking to deploy LLMs in production environments without needing massive computational resources.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    ChatLLM.cpp

    ChatLLM.cpp

    Pure C++ implementation of several models for real-time chatting

    chatllm.cpp is a pure C++ implementation designed for real-time chatting with Large Language Models (LLMs) on personal computers, supporting both CPU and GPU executions. It enables users to run various LLMs ranging from less than 1 billion to over 300 billion parameters, facilitating responsive and efficient conversational AI experiences without relying on external servers.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Distributed Llama

    Distributed Llama

    Connect home devices into a powerful cluster to accelerate LLM

    Distributed Llama is an open-source project that enables users to connect multiple home devices into a powerful cluster to accelerate Large Language Model (LLM) inference. By leveraging tensor parallelism and high-speed synchronization over Ethernet, it allows for faster performance as more devices are added to the cluster. The system supports various operating systems, including Linux, macOS, and Windows, and is optimized for both ARM and x86_64 AVX2 CPUs.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • Next