Showing 14 open source projects for "apache"

View related business solutions
  • Retool your internal operations Icon
    Retool your internal operations

    Generate secure, production-grade apps that connect to your business data. Not just prototypes, but tools your team can actually deploy.

    Build internal software that meets enterprise security standards without waiting on engineering resources. Retool connects to your databases, APIs, and data sources while maintaining the permissions and controls you need. Create custom dashboards, admin tools, and workflows from natural language prompts—all deployed in your cloud with security baked in. Stop duct-taping operations together, start building in Retool.
    Build an app in Retool
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • 1
    OpenVINO

    OpenVINO

    OpenVINO™ Toolkit repository

    OpenVINO™ is an open-source toolkit for optimizing and deploying AI inference. Boost deep learning performance in computer vision, automatic speech recognition, natural language processing and other common tasks. Use models trained with popular frameworks like TensorFlow, PyTorch and more. Reduce resource demands and efficiently deploy on a range of Intel® platforms from edge to cloud. This open-source version includes several components: namely Model Optimizer, OpenVINO™ Runtime,...
    Downloads: 22 This Week
    Last Update:
    See Project
  • 2
    TensorRT

    TensorRT

    C++ library for high performance inference on NVIDIA GPUs

    NVIDIA® TensorRT™ is an SDK for high-performance deep learning inference. It includes a deep learning inference optimizer and runtime that delivers low latency and high throughput for deep learning inference applications. TensorRT-based applications perform up to 40X faster than CPU-only platforms during inference. With TensorRT, you can optimize neural network models trained in all major frameworks, calibrate for lower precision with high accuracy, and deploy to hyperscale data centers,...
    Downloads: 18 This Week
    Last Update:
    See Project
  • 3
    PaddlePaddle

    PaddlePaddle

    PArallel Distributed Deep LEarning: Machine Learning Framework

    PaddlePaddle is an open source deep learning industrial platform with advanced technologies and a rich set of features that make innovation and application of deep learning easier. It is the only independent R&D deep learning platform in China, and has been widely adopted in various sectors including manufacturing, agriculture and enterprise service. PaddlePaddle covers core deep learning frameworks, basic model libraries, end-to-end development kits and more, with support for both...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 4
    Neural Speed

    Neural Speed

    An innovative library for efficient LLM inference

    neural-speed is an innovative library developed by Intel to enhance the efficiency of Large Language Model (LLM) inference through low-bit quantization techniques. By reducing the precision of model weights and activations, neural-speed aims to accelerate inference while maintaining model accuracy, making it suitable for deployment in resource-constrained environments.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Grafana: The open and composable observability platform Icon
    Grafana: The open and composable observability platform

    Faster answers, predictable costs, and no lock-in built by the team helping to make observability accessible to anyone.

    Grafana is the open source analytics & monitoring solution for every database.
    Learn More
  • 5
    ONNX

    ONNX

    Open standard for machine learning interoperability

    ONNX is an open format built to represent machine learning models. ONNX defines a common set of operators - the building blocks of machine learning and deep learning models - and a common file format to enable AI developers to use models with a variety of frameworks, tools, runtimes, and compilers. Open Neural Network Exchange (ONNX) is an open ecosystem that empowers AI developers to choose the right tools as their project evolves. ONNX provides an open source format for AI models, both...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 6
    gemma.cpp

    gemma.cpp

    lightweight, standalone C++ inference engine for Google's Gemma models

    Gemma.cpp is a C++ implementation for running inference with Gemma models efficiently on CPUs and GPUs. Developed by Google, it allows running large language models (LLMs) like Gemma with minimal hardware, focusing on optimized performance and low latency. Gemma.cpp is intended for developers seeking to deploy LLMs in production environments without needing massive computational resources.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    PaddleSpeech

    PaddleSpeech

    Easy-to-use Speech Toolkit including Self-Supervised Learning model

    PaddleSpeech is an open-source toolkit on PaddlePaddle platform for a variety of critical tasks in speech and audio, with state-of-art and influential models. Via the easy-to-use, efficient, flexible and scalable implementation, our vision is to empower both industrial application and academic research, including training, inference & testing modules, and deployment process. Low barriers to install, CLI, Server, and Streaming Server is available to quick-start your journey. We provide...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 8
    MNN

    MNN

    MNN is a blazing fast, lightweight deep learning framework

    MNN is a highly efficient and lightweight deep learning framework. It supports inference and training of deep learning models, and has industry leading performance for inference and training on-device. At present, MNN has been integrated in more than 20 apps of Alibaba Inc, such as Taobao, Tmall, Youku, Dingtalk, Xianyu and etc., covering more than 70 usage scenarios such as live broadcast, short video capture, search recommendation, product searching by image, interactive marketing, equity...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 9
    MegEngine

    MegEngine

    Easy-to-use deep learning framework with 3 key features

    MegEngine is a fast, scalable and easy-to-use deep learning framework with 3 key features. You can represent quantization/dynamic shape/image pre-processing and even derivation in one model. After training, just put everything into your model and inference it on any platform at ease. Speed and precision problems won't bother you anymore due to the same core inside. In training, GPU memory usage could go down to one-third at the cost of only one additional line, which enables the DTR...
    Downloads: 2 This Week
    Last Update:
    See Project
  • Inventors: Validate Your Idea, Protect It and Gain Market Advantages Icon
    Inventors: Validate Your Idea, Protect It and Gain Market Advantages

    SenseIP is ideal for individual inventors, startups, and businesses

    senseIP is an AI innovation platform for inventors, automating any aspect of IP from the moment you have an idea. You can have it researched for uniqueness and protected; quickly and effortlessly, without expensive attorneys. Built for business success while securing your competitive edge.
    Learn More
  • 10
    OpenMLDB

    OpenMLDB

    OpenMLDB is an open-source machine learning database

    OpenMLDB is an open-source machine learning database that provides a feature platform computing consistent features for training and inference. OpenMLDB is an open-source machine learning database that is committed to solving the data and feature challenges. OpenMLDB has been deployed in hundreds of real-world enterprise applications. It prioritizes the capability of feature engineering using SQL for open-source, which offers a feature platform enabling consistent features for training and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    OpenVINO Model Server

    OpenVINO Model Server

    A scalable inference server for models optimized with OpenVINO

    OpenVINO™ Model Server is a high-performance inference serving system designed to host and serve machine learning models that have been optimized with the OpenVINO toolkit. It’s implemented in C++ for scalability and efficiency, making it suitable for both edge and cloud deployments where inference workloads must be reliable and high throughput. The server exposes model inference via standard network protocols like REST and gRPC, allowing any client that speaks those protocols to request...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    DALI

    DALI

    A GPU-accelerated library containing highly optimized building blocks

    The NVIDIA Data Loading Library (DALI) is a library for data loading and pre-processing to accelerate deep learning applications. It provides a collection of highly optimized building blocks for loading and processing image, video and audio data. It can be used as a portable drop-in replacement for built-in data loaders and data iterators in popular deep learning frameworks. Deep learning applications require complex, multi-stage data processing pipelines that include loading, decoding,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    TensorFlow Serving

    TensorFlow Serving

    Serving system for machine learning models

    TensorFlow Serving is a flexible, high-performance serving system for machine learning models, designed for production environments. It deals with the inference aspect of machine learning, taking models after training and managing their lifetimes, providing clients with versioned access via a high-performance, reference-counted lookup table. TensorFlow Serving provides out-of-the-box integration with TensorFlow models, but can be easily extended to serve other types of models and data. The...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    MACE

    MACE

    Deep learning inference framework optimized for mobile platforms

    Mobile AI Compute Engine (or MACE for short) is a deep learning inference framework optimized for mobile heterogeneous computing on Android, iOS, Linux and Windows devices. Runtime is optimized with NEON, OpenCL and Hexagon, and Winograd algorithm is introduced to speed up convolution operations. The initialization is also optimized to be faster. Chip-dependent power options like big.LITTLE scheduling, Adreno GPU hints are included as advanced APIs. UI responsiveness guarantee is sometimes...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next