Showing 109 open source projects for "python-i2c-tiny-usb"

View related business solutions
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    Build gen AI apps with an all-in-one modern database: MongoDB Atlas

    MongoDB Atlas provides built-in vector search and a flexible document model so developers can build, scale, and run gen AI apps without stitching together multiple databases. From LLM integration to semantic search, Atlas simplifies your AI architecture—and it’s free to get started.
    Start Free
  • Level Up Your Cyber Defense with External Threat Management Icon
    Level Up Your Cyber Defense with External Threat Management

    See every risk before it hits. From exposed data to dark web chatter. All in one unified view.

    Move beyond alerts. Gain full visibility, context, and control over your external attack surface to stay ahead of every threat.
    Try for Free
  • 1
    OpenVINO Training Extensions

    OpenVINO Training Extensions

    Trainable models and NN optimization tools

    OpenVINO™ Training Extensions provide a convenient environment to train Deep Learning models and convert them using the OpenVINO™ toolkit for optimized inference. When ote_cli is installed in the virtual environment, you can use the ote command line interface to perform various actions for templates related to the chosen task type, such as running, training, evaluating, exporting, etc. ote train trains a model (a particular model template) on a dataset and saves results in two files. ote...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    TensorFlow Probability

    TensorFlow Probability

    Probabilistic reasoning and statistical analysis in TensorFlow

    TensorFlow Probability is a library for probabilistic reasoning and statistical analysis. TensorFlow Probability (TFP) is a Python library built on TensorFlow that makes it easy to combine probabilistic models and deep learning on modern hardware (TPU, GPU). It's for data scientists, statisticians, ML researchers, and practitioners who want to encode domain knowledge to understand data and make predictions. Since TFP inherits the benefits of TensorFlow, you can build, fit, and deploy a model using a single language throughout the lifecycle of model exploration and production. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Intel Extension for Transformers

    Intel Extension for Transformers

    Build your chatbot within minutes on your favorite device

    Intel Extension for Transformers is an innovative toolkit designed to accelerate Transformer-based models on Intel platforms, including CPUs and GPUs. It offers state-of-the-art compression techniques for Large Language Models (LLMs) and provides tools to build chatbots within minutes on various devices. The extension aims to optimize the performance of Transformer-based models, making them more efficient and accessible.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    LazyLLM

    LazyLLM

    Easiest and laziest way for building multi-agent LLMs applications

    LazyLLM is an optimized, lightweight LLM server designed for easy and fast deployment of large language models. It is fully compatible with the OpenAI API specification, enabling developers to integrate their own models into applications that normally rely on OpenAI’s endpoints. LazyLLM emphasizes low resource usage and fast inference while supporting multiple models.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 5
    SetFit

    SetFit

    Efficient few-shot learning with Sentence Transformers

    SetFit is an efficient and prompt-free framework for few-shot fine-tuning of Sentence Transformers. It achieves high accuracy with little labeled data - for instance, with only 8 labeled examples per class on the Customer Reviews sentiment dataset, SetFit is competitive with fine-tuning RoBERTa Large on the full training set of 3k examples.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Pytorch-toolbelt

    Pytorch-toolbelt

    PyTorch extensions for fast R&D prototyping and Kaggle farming

    A pytorch-toolbelt is a Python library with a set of bells and whistles for PyTorch for fast R&D prototyping and Kaggle farming. Easy model building using flexible encoder-decoder architecture. Modules: CoordConv, SCSE, Hypercolumn, Depthwise separable convolution and more. GPU-friendly test-time augmentation TTA for segmentation and classification. GPU-friendly inference on huge (5000x5000) images.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Mistral Inference

    Mistral Inference

    Official inference library for Mistral models

    Open and portable generative AI for devs and businesses. We release open-weight models for everyone to customize and deploy where they want it. Our super-efficient model Mistral Nemo is available under Apache 2.0, while Mistral Large 2 is available through both a free non-commercial license, and a commercial license.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    dstack

    dstack

    Open-source tool designed to enhance the efficiency of workloads

    dstack is an open-source tool designed to enhance the efficiency of running ML workloads in any cloud (AWS, GCP, Azure, Lambda, etc). It streamlines development and deployment, reduces cloud costs, and frees users from vendor lock-in.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    towhee

    towhee

    Framework that is dedicated to making neural data processing

    Towhee is an open-source machine-learning pipeline that helps you encode your unstructured data into embeddings. You can use our Python API to build a prototype of your pipeline and use Towhee to automatically optimize it for production-ready environments. From images to text to 3D molecular structures, Towhee supports data transformation for nearly 20 different unstructured data modalities. We provide end-to-end pipeline optimizations, covering everything from data decoding/encoding, to model inference, making your pipeline execution 10x faster. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Keep company data safe with Chrome Enterprise Icon
    Keep company data safe with Chrome Enterprise

    Protect your business with AI policies and data loss prevention in the browser

    Make AI work your way with Chrome Enterprise. Block unapproved sites and set custom data controls that align with your company's policies.
    Download Chrome
  • 10
    AWS Deep Learning Containers

    AWS Deep Learning Containers

    A set of Docker images for training and serving models in TensorFlow

    AWS Deep Learning Containers (DLCs) are a set of Docker images for training and serving models in TensorFlow, TensorFlow 2, PyTorch, and MXNet. Deep Learning Containers provide optimized environments with TensorFlow and MXNet, Nvidia CUDA (for GPU instances), and Intel MKL (for CPU instances) libraries and are available in the Amazon Elastic Container Registry (Amazon ECR). The AWS DLCs are used in Amazon SageMaker as the default vehicles for your SageMaker jobs such as training, inference,...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 11
    Transformer Engine

    Transformer Engine

    A library for accelerating Transformer models on NVIDIA GPUs

    Transformer Engine (TE) is a library for accelerating Transformer models on NVIDIA GPUs, including using 8-bit floating point (FP8) precision on Hopper GPUs, to provide better performance with lower memory utilization in both training and inference. TE provides a collection of highly optimized building blocks for popular Transformer architectures and an automatic mixed precision-like API that can be used seamlessly with your framework-specific code. TE also includes a framework-agnostic C++...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 12
    KServe

    KServe

    Standardized Serverless ML Inference Platform on Kubernetes

    KServe provides a Kubernetes Custom Resource Definition for serving machine learning (ML) models on arbitrary frameworks. It aims to solve production model serving use cases by providing performant, high abstraction interfaces for common ML frameworks like Tensorflow, XGBoost, ScikitLearn, PyTorch, and ONNX. It encapsulates the complexity of autoscaling, networking, health checking, and server configuration to bring cutting edge serving features like GPU Autoscaling, Scale to Zero, and...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 13
    LitGPT

    LitGPT

    20+ high-performance LLMs with recipes to pretrain, finetune at scale

    LitGPT is a collection of over 20 high-performance large language models (LLMs) accompanied by recipes to pretrain, finetune, and deploy them at scale. It provides implementations without abstractions, making it beginner-friendly while offering advanced features like flash attention and support for various precision levels. LitGPT is designed to run efficiently across multiple GPUs or TPUs, catering to both small-scale and large-scale deployments.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Genv

    Genv

    GPU environment management and cluster orchestration

    Genv is an open-source environment and cluster management system for GPUs. Genv lets you easily control, configure, monitor and enforce the GPU resources that you are using in a GPU machine or cluster. It is intended to ease up the process of GPU allocation for data scientists without code changes.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Adapters

    Adapters

    A Unified Library for Parameter-Efficient Learning

    Adapters is an add-on library to HuggingFace's Transformers, integrating 10+ adapter methods into 20+ state-of-the-art Transformer models with minimal coding overhead for training and inference. Adapters provide a unified interface for efficient fine-tuning and modular transfer learning, supporting a myriad of features like full-precision or quantized training (e.g. Q-LoRA, Q-Bottleneck Adapters, or Q-PrefixTuning), adapter merging via task arithmetics or the composition of multiple adapters...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Llama Recipes

    Llama Recipes

    Scripts for fine-tuning Meta Llama3 with composable FSDP & PEFT method

    The 'llama-recipes' repository is a companion to the Meta Llama models. We support the latest version, Llama 3.1, in this repository. The goal is to provide a scalable library for fine-tuning Meta Llama models, along with some example scripts and notebooks to quickly get started with using the models in a variety of use-cases, including fine-tuning for domain adaptation and building LLM-based applications with Llama and other tools in the LLM ecosystem. The examples here showcase how to run...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    LLM Foundry

    LLM Foundry

    LLM training code for MosaicML foundation models

    Introducing MPT-7B, the first entry in our MosaicML Foundation Series. MPT-7B is a transformer trained from scratch on 1T tokens of text and code. It is open source, available for commercial use, and matches the quality of LLaMA-7B. MPT-7B was trained on the MosaicML platform in 9.5 days with zero human intervention at a cost of ~$200k. Large language models (LLMs) are changing the world, but for those outside well-resourced industry labs, it can be extremely difficult to train and deploy...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 18
    Curated Transformers

    Curated Transformers

    PyTorch library of curated Transformer models and their components

    State-of-the-art transformers, brick by brick. Curated Transformers is a transformer library for PyTorch. It provides state-of-the-art models that are composed of a set of reusable components. Supports state-of-the-art transformer models, including LLMs such as Falcon, Llama, and Dolly v2. Implementing a feature or bugfix benefits all models. For example, all models support 4/8-bit inference through the bitsandbytes library and each model can use the PyTorch meta device to avoid unnecessary...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    PEFT

    PEFT

    State-of-the-art Parameter-Efficient Fine-Tuning

    Parameter-Efficient Fine-Tuning (PEFT) methods enable efficient adaptation of pre-trained language models (PLMs) to various downstream applications without fine-tuning all the model's parameters. Fine-tuning large-scale PLMs is often prohibitively costly. In this regard, PEFT methods only fine-tune a small number of (extra) model parameters, thereby greatly decreasing the computational and storage costs. Recent State-of-the-Art PEFT techniques achieve performance comparable to that of full...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    FastChat

    FastChat

    Open platform for training, serving, and evaluating language models

    FastChat is an open platform for training, serving, and evaluating large language model-based chatbots. If you do not have enough memory, you can enable 8-bit compression by adding --load-8bit to the commands above. This can reduce memory usage by around half with slightly degraded model quality. It is compatible with the CPU, GPU, and Metal backend. Vicuna-13B with 8-bit compression can run on a single NVIDIA 3090/4080/T4/V100(16GB) GPU. In addition to that, you can add --cpu-offloading to...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    PaddleSpeech

    PaddleSpeech

    Easy-to-use Speech Toolkit including Self-Supervised Learning model

    PaddleSpeech is an open-source toolkit on PaddlePaddle platform for a variety of critical tasks in speech and audio, with state-of-art and influential models. Via the easy-to-use, efficient, flexible and scalable implementation, our vision is to empower both industrial application and academic research, including training, inference & testing modules, and deployment process. Low barriers to install, CLI, Server, and Streaming Server is available to quick-start your journey. We provide...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    MMDeploy

    MMDeploy

    OpenMMLab Model Deployment Framework

    MMDeploy is an open-source deep learning model deployment toolset. It is a part of the OpenMMLab project. Models can be exported and run in several backends, and more will be compatible. All kinds of modules in the SDK can be extended, such as Transform for image processing, Net for Neural Network inference, Module for postprocessing and so on. Install and build your target backend. ONNX Runtime is a cross-platform inference and training accelerator compatible with many popular ML/DNN...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    TensorFlow Model Optimization Toolkit

    TensorFlow Model Optimization Toolkit

    A toolkit to optimize ML models for deployment for Keras & TensorFlow

    The TensorFlow Model Optimization Toolkit is a suite of tools for optimizing ML models for deployment and execution. Among many uses, the toolkit supports techniques used to reduce latency and inference costs for cloud and edge devices (e.g. mobile, IoT). Deploy models to edge devices with restrictions on processing, memory, power consumption, network usage, and model storage space. Enable execution on and optimize for existing hardware or new special purpose accelerators. Choose the model...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Infinity

    Infinity

    Low-latency REST API for serving text-embeddings

    Infinity is a high-throughput, low-latency REST API for serving vector embeddings, supporting all sentence-transformer models and frameworks. Infinity is developed under MIT License. Infinity powers inference behind Gradient.ai and other Embedding API providers.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    OpenFold

    OpenFold

    Trainable, memory-efficient, and GPU-friendly PyTorch reproduction

    OpenFold carefully reproduces (almost) all of the features of the original open source inference code (v2.0.1). The sole exception is model ensembling, which fared poorly in DeepMind's own ablation testing and is being phased out in future DeepMind experiments. It is omitted here for the sake of reducing clutter. In cases where the Nature paper differs from the source, we always defer to the latter. OpenFold is trainable in full precision, half precision, or bfloat16 with or without...
    Downloads: 0 This Week
    Last Update:
    See Project