Showing 325 open source projects for "prediction"

View related business solutions
  • Save hundreds of developer hours with components built for SaaS applications. Icon
    Save hundreds of developer hours with components built for SaaS applications.

    The #1 Embedded Analytics Solution for SaaS Teams.

    Whether you want full self-service analytics or simpler multi-tenant security, Qrvey’s embeddable components and scalable data management remove the guess work.
    Try Developer Playground
  • Red Hat Enterprise Linux on Microsoft Azure Icon
    Red Hat Enterprise Linux on Microsoft Azure

    Deploy Red Hat Enterprise Linux on Microsoft Azure for a secure, reliable, and scalable cloud environment, fully integrated with Microsoft services.

    Red Hat Enterprise Linux (RHEL) on Microsoft Azure provides a secure, reliable, and flexible foundation for your cloud infrastructure. Red Hat Enterprise Linux on Microsoft Azure is ideal for enterprises seeking to enhance their cloud environment with seamless integration, consistent performance, and comprehensive support.
    Learn More
  • 1
    Stock prediction deep neural learning

    Stock prediction deep neural learning

    Predicting stock prices using a TensorFlow LSTM

    ... is a complex task, as it is influenced by various factors such as market trends, political events, and economic indicators. The fluctuations in stock prices are driven by the forces of supply and demand, which can be unpredictable at times. To identify patterns and trends in stock prices, deep learning techniques can be used for machine learning. Long short-term memory (LSTM) is a type of recurrent neural network (RNN) that is specifically designed for sequence modeling and prediction.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2

    Vascular prediction

    Study develops predictive model to reduce 90-day readmissions.

    In recent years, hospital readmissions have increased, affecting public evaluations and pay-for-performance measures. A study developed a predictive model for 90-day hospital readmission in patients undergoing elective vascular procedures. The best predictive model was Shrinkage Discriminant Analysis, which considered variables such as length of stay, comorbidity scores, procedure type, and admission type. The model indicates that efforts to reduce vascular readmissions should prioritize...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Alphafold

    Alphafold

    Open source code for AlphaFold

    This package provides an implementation of the inference pipeline of AlphaFold v2.0. This is a completely new model that was entered in CASP14 and published in Nature. For simplicity, we refer to this model as AlphaFold throughout the rest of this document. Any publication that discloses findings arising from using this source code or the model parameters should cite the AlphaFold paper. Please also refer to the Supplementary Information for a detailed description of the method. You can use...
    Downloads: 9 This Week
    Last Update:
    See Project
  • 4
    CatBoost

    CatBoost

    High-performance library for gradient boosting on decision trees

    CatBoost is a fast, high-performance open source library for gradient boosting on decision trees. It is a machine learning method with plenty of applications, including ranking, classification, regression and other machine learning tasks for Python, R, Java, C++. CatBoost offers superior performance over other GBDT libraries on many datasets, and has several superb features. It has best in class prediction speed, supports both numerical and categorical features, has a fast and scalable GPU...
    Downloads: 2 This Week
    Last Update:
    See Project
  • Bright Data - All in One Platform for Proxies and Web Scraping Icon
    Bright Data - All in One Platform for Proxies and Web Scraping

    Say goodbye to blocks, restrictions, and CAPTCHAs

    Bright Data offers the highest quality proxies with automated session management, IP rotation, and advanced web unlocking technology. Enjoy reliable, fast performance with easy integration, a user-friendly dashboard, and enterprise-grade scaling. Powered by ethically-sourced residential IPs for seamless web scraping.
    Get Started
  • 5
    Basic Pitch

    Basic Pitch

    A lightweight audio-to-MIDI converter with pitch bend detection

    Basic Pitch is a Python library for Automatic Music Transcription (AMT), using lightweight neural network developed by Spotify's Audio Intelligence Lab. It's small, easy-to-use, pip install-able and npm install-able via its sibling repo. Basic Pitch may be simple, but it's is far from "basic"! basic-pitch is efficient and easy to use, and its multi pitch support, its ability to generalize across instruments, and its note accuracy compete with much larger and more resource-hungry AMT systems....
    Downloads: 6 This Week
    Last Update:
    See Project
  • 6
    frugally-deep

    frugally-deep

    A lightweight header-only library for using Keras (TensorFlow) models

    Use Keras models in C++ with ease. A lightweight header-only library for using Keras (TensorFlow) models in C++. Works out-of-the-box also when compiled into a 32-bit executable. (Of course, 64 bit is fine too.) Avoids temporarily allocating (potentially large chunks of) additional RAM during convolutions (by not materializing the im2col input matrix). Utterly ignores even the most powerful GPU in your system and uses only one CPU core per prediction. Quite fast on one CPU core, and you can run...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 7
    Chemprop

    Chemprop

    Message Passing Neural Networks for Molecule Property Prediction

    Chemprop is a repository containing message-passing neural networks for molecular property prediction.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8

    LightGBM

    Gradient boosting framework based on decision tree algorithms

    LightGBM or Light Gradient Boosting Machine is a high-performance, open source gradient boosting framework based on decision tree algorithms. Compared to other boosting frameworks, LightGBM offers several advantages in terms of speed, efficiency and accuracy. Parallel experiments have shown that LightGBM can attain linear speed-up through multiple machines for training in specific settings, all while consuming less memory. LightGBM supports parallel and GPU learning, and can handle...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 9
    NGBoost

    NGBoost

    Natural Gradient Boosting for Probabilistic Prediction

    ngboost is a Python library that implements Natural Gradient Boosting, as described in "NGBoost: Natural Gradient Boosting for Probabilistic Prediction". It is built on top of Scikit-Learn and is designed to be scalable and modular with respect to the choice of proper scoring rule, distribution, and base learner. A didactic introduction to the methodology underlying NGBoost is available in this slide deck.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Free CRM Software With Something for Everyone Icon
    Free CRM Software With Something for Everyone

    216,000+ customers in over 135 countries grow their businesses with HubSpot

    Think CRM software is just about contact management? Think again. HubSpot CRM has free tools for everyone on your team, and it’s 100% free. Here’s how our free CRM solution makes your job easier.
    Get free CRM
  • 10
    ConformalPrediction.jl

    ConformalPrediction.jl

    Predictive Uncertainty Quantification through Conformal Prediction

    ConformalPrediction.jl is a package for Predictive Uncertainty Quantification (UQ) through Conformal Prediction (CP) in Julia. It is designed to work with supervised models trained in MLJ (Blaom et al. 2020). Conformal Prediction is easy-to-understand, easy-to-use and model-agnostic and it works under minimal distributional assumptions. Intuitively, CP works under the premise of turning heuristic notions of uncertainty into rigorous uncertainty estimates through repeated sampling or the use...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Compose

    Compose

    A machine learning tool for automated prediction engineering

    Compose is a machine learning tool for automated prediction engineering. It allows you to structure prediction problems and generate labels for supervised learning. An end user defines an outcome of interest by writing a labeling function, then runs a search to automatically extract training examples from historical data. Its result is then provided to Featuretools for automated feature engineering and subsequently to EvalML for automated machine learning. Prediction problems are structured...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Visual Studio Code client for Tabnine

    Visual Studio Code client for Tabnine

    Visual Studio Code client for Tabnine

    ...-assisted code completion, AI-powered code completion, AI copilot, AI code snippets, code suggestion, code prediction, code hinting, content assist, unit test generation or documentation generation, using Tabnine can massively impact your coding velocity, significantly cutting down your coding time.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 13
    cAdvisor

    cAdvisor

    Analyzes resource usage and performance characteristics

    cAdvisor (Container Advisor) provides container users an understanding of the resource usage and performance characteristics of their running containers. It is a running daemon that collects, aggregates, processes, and exports information about running containers. Specifically, for each container it keeps resource isolation parameters, historical resource usage, histograms of complete historical resource usage and network statistics. This data is exported by container and machine-wide....
    Downloads: 1 This Week
    Last Update:
    See Project
  • 14
    World Cup NFT Fantasy

    World Cup NFT Fantasy

    World Cup NFT Fantasy is a prediction-based game

    WC NFT Fantasy is a Prediction game where you can play a game to win a prize if you guessed the winning teams right. Extending the idea of CryptoFishx we have built an application that anyone can participate and win with the confidence that no one is going to tamper or cheat in the system. Having it on the on chain (on the blockchain) enables us to use smart contracts which are public (anyone can see and read) immutable (once deployed it cannot be changed) code that governs everyone's...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Make-A-Video - Pytorch (wip)

    Make-A-Video - Pytorch (wip)

    Implementation of Make-A-Video, new SOTA text to video generator

    Implementation of Make-A-Video, new SOTA text to video generator from Meta AI, in Pytorch. They combine pseudo-3d convolutions (axial convolutions) and temporal attention and show much better temporal fusion. The pseudo-3d convolutions isn't a new concept. It has been explored before in other contexts, say for protein contact prediction as "dimensional hybrid residual networks". The gist of the paper comes down to, take a SOTA text-to-image model (here they use DALL-E2, but the same learning...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 16
    SAHI

    SAHI

    A lightweight vision library for performing large object detection

    A lightweight vision library for performing large-scale object detection & instance segmentation. Object detection and instance segmentation are by far the most important fields of applications in Computer Vision. However, detection of small objects and inference on large images are still major issues in practical usage. Here comes the SAHI to help developers overcome these real-world problems with many vision utilities. Detection of small objects and objects far away in the scene is a major...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    ReservoirComputing.jl

    ReservoirComputing.jl

    Reservoir computing utilities for scientific machine learning (SciML)

    ReservoirComputing.jl provides an efficient, modular and easy-to-use implementation of Reservoir Computing models such as Echo State Networks (ESNs). For information on using this package please refer to the stable documentation. Use the in-development documentation to take a look at not-yet-released features.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    OGB

    OGB

    Benchmark datasets, data loaders, and evaluators for graph machine

    ... that are of varying sizes and cover a variety graph machine learning tasks, including prediction of node, link, and graph properties. OGB fully automates dataset processing. The OGB data loaders automatically download and process graphs, provide graph objects that are fully compatible with Pytorch Geometric and DGL. OGB provides standardized dataset splits and evaluators that allow for easy and reliable comparison of different models in a unified manner.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    High-Level Training Utilities Pytorch

    High-Level Training Utilities Pytorch

    High-level training, data augmentation, and utilities for Pytorch

    ... loading, or sampling functions. ModuleTrainer. The ModuleTrainer class provides a high-level training interface that abstracts away the training loop while providing callbacks, constraints, initializers, regularizers, and more. You also have access to the standard evaluation and prediction functions. Torchsample provides a wide range of callbacks, generally mimicking the interface found in Keras.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    DeepCTR

    DeepCTR

    Package of deep-learning based CTR models

    ... techniques have been widely used in CTR prediction task. The data in CTR estimation task usually includes high sparse,high cardinality categorical features and some dense numerical features. Since DNN are good at handling dense numerical features,we usually map the sparse categorical features to dense numerical through embedding technique.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    tsfresh

    tsfresh

    Automatic extraction of relevant features from time series

    tsfresh is a python package. It automatically calculates a large number of time series characteristics, the so called features. tsfresh is used to to extract characteristics from time series. Without tsfresh, you would have to calculate all characteristics by hand. With tsfresh this process is automated and all your features can be calculated automatically. Further tsfresh is compatible with pythons pandas and scikit-learn APIs, two important packages for Data Science endeavours in python....
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    dtreeviz

    dtreeviz

    Python library for decision tree visualization & model interpretation

    A python library for decision tree visualization and model interpretation. Decision trees are the fundamental building block of gradient boosting machines and Random Forests(tm), probably the two most popular machine learning models for structured data. Visualizing decision trees is a tremendous aid when learning how these models work and when interpreting models. The visualizations are inspired by an educational animation by R2D3; A visual introduction to machine learning. Please see How to...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    DoWhy

    DoWhy

    DoWhy is a Python library for causal inference

    DoWhy is a Python library for causal inference that supports explicit modeling and testing of causal assumptions. DoWhy is based on a unified language for causal inference, combining causal graphical models and potential outcomes frameworks. Much like machine learning libraries have done for prediction, DoWhy is a Python library that aims to spark causal thinking and analysis. DoWhy provides a wide variety of algorithms for effect estimation, causal structure learning, diagnosis of causal...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Crane

    Crane

    Crane is a FinOps Platform for Cloud Resource Analytics and Economics

    Crane is a FinOps Platform for Cloud Resource Analytics and Economics in Kubernetes clusters. The goal is not only to help users to manage cloud cost easily but also to ensure the quality of applications.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    DDPM-CD

    DDPM-CD

    Remote sensing change detection using denoising diffusion models

    ... feature representations from the pre-trained diffusion model as inputs and outputs change prediction map.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • 4
  • 5
  • Next