Showing 55 open source projects for "dtmf decoder python"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Powering the best of the internet | Fastly Icon
    Powering the best of the internet | Fastly

    Fastly's edge cloud platform delivers faster, safer, and more scalable sites and apps to customers.

    Ensure your websites, applications and services can effortlessly handle the demands of your users with Fastly. Fastly’s portfolio is designed to be highly performant, personalized and secure while seamlessly scaling to support your growth.
    Try for free
  • 1
    Whisper

    Whisper

    Robust Speech Recognition via Large-Scale Weak Supervision

    ... as a sequence of tokens to be predicted by the decoder, allowing a single model to replace many stages of a traditional speech-processing pipeline. The multitask training format uses a set of special tokens that serve as task specifiers or classification targets.
    Downloads: 91 This Week
    Last Update:
    See Project
  • 2
    x-transformers

    x-transformers

    A simple but complete full-attention transformer

    A simple but complete full-attention transformer with a set of promising experimental features from various papers. Proposes adding learned memory key/values prior to attending. They were able to remove feedforwards altogether and attain a similar performance to the original transformers. I have found that keeping the feedforwards and adding the memory key/values leads to even better performance. Proposes adding learned tokens, akin to CLS tokens, named memory tokens, that is passed through...
    Downloads: 8 This Week
    Last Update:
    See Project
  • 3
    nghttp2

    nghttp2

    HTTP/2 C Library and tools

    ... and nghttp2 is now one of the most mature HTTP/2 implementations. HTTP/2 utilizes header compression method called HPACK. We offer HPACK encoder and decoder are available as public API. nghttp2 library itself is a bit low-level. The experimental high-level C++ API is also available. We have Python binding of this library, but we have not covered everything yet.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 4
    CTranslate2

    CTranslate2

    Fast inference engine for Transformer models

    CTranslate2 is a C++ and Python library for efficient inference with Transformer models. The project implements a custom runtime that applies many performance optimization techniques such as weights quantization, layers fusion, batch reordering, etc., to accelerate and reduce the memory usage of Transformer models on CPU and GPU. The execution is significantly faster and requires less resources than general-purpose deep learning frameworks on supported models and tasks thanks to many advanced...
    Downloads: 5 This Week
    Last Update:
    See Project
  • MongoDB 8.0 on Atlas | Run anywhere Icon
    MongoDB 8.0 on Atlas | Run anywhere

    Now available in even more cloud regions across AWS, Azure, and Google Cloud.

    MongoDB 8.0 brings enhanced performance and flexibility to Atlas—with expanded availability across 125+ regions globally. Build modern apps anywhere your users are, with the power of a modern database behind you.
    Learn More
  • 5
    Pytorch-toolbelt

    Pytorch-toolbelt

    PyTorch extensions for fast R&D prototyping and Kaggle farming

    A pytorch-toolbelt is a Python library with a set of bells and whistles for PyTorch for fast R&D prototyping and Kaggle farming. Easy model building using flexible encoder-decoder architecture. Modules: CoordConv, SCSE, Hypercolumn, Depthwise separable convolution and more. GPU-friendly test-time augmentation TTA for segmentation and classification. GPU-friendly inference on huge (5000x5000) images. Every-day common routines (fix/restore random seed, filesystem utils, metrics). Losses...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 6
    far2l

    far2l

    Linux port of FAR v2

    Linux fork of FAR Manager v2. Works also on OSX/MacOS and BSD (but the latter is not tested on a regular manner). Plug-ins that are currently working: NetRocks (SFTP/SCP/FTP/FTPS/SMB/NFS/WebDAV), colorer, multiarc, tmppanel, align, autowrap, drawing, edit case, SimpleIndent, Calculator, Python (optional scripting support).
    Downloads: 3 This Week
    Last Update:
    See Project
  • 7
    OpenNMT-tf

    OpenNMT-tf

    Neural machine translation and sequence learning using TensorFlow

    ..., the following instance defines a sequence-to-sequence model with 2 concatenated input features, a self-attentional encoder, and an attentional RNN decoder sharing its input and output embeddings. Sequence to sequence models can be trained with guided alignment and alignment information are returned as part of the translation API.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 8
    simplejson

    simplejson

    simplejson is a simple, fast, extensible JSON encoder/decoder

    simplejson is a simple, fast, complete, correct and extensible JSON <http://json.org> encoder and decoder for Python 3.3+ with legacy support for Python 2.5+. It is pure Python code with no dependencies but includes an optional C extension for a serious speed boost. simplejson is the externally maintained development version of the json library included with Python (since 2.6). This version is tested with the latest Python 3.8 and maintains backward compatibility with Python 3.3+ and the legacy...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    UltraJSON

    UltraJSON

    Ultra fast JSON decoder and encoder written in C with Python bindings

    UltraJSON is an ultra-fast JSON encoder and decoder written in pure C with bindings for Python 3.7+. May be used as a drop-in replacement for most other JSON parsers for Python. Used to enable special encoding of "unsafe" HTML characters into safer Unicode sequences. Limits output to ASCII and escapes all extended characters above 127. Default is True. If your end format supports UTF-8, setting this option to false is highly recommended to save space. By default, debugging symbols are stripped...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Build Securely on Azure with Proven Frameworks Icon
    Build Securely on Azure with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 10
    Basaran

    Basaran

    Basaran, an open-source alternative to the OpenAI text completion API

    .... Support both decoder-only and encoder-decoder models. Detokenizer that handles surrogates and whitespace. Multi-GPU support with optional 8-bit quantization. Real-time partial progress using server-sent events. Compatible with OpenAI API and client libraries. Comes with a fancy web-based playground. Docker images are available on Docker Hub and GitHub Packages.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    DALL-E 2 - Pytorch

    DALL-E 2 - Pytorch

    Implementation of DALL-E 2, OpenAI's updated text-to-image synthesis

    ... as the denoising network) To train DALLE-2 is a 3 step process, with the training of CLIP being the most important. To train CLIP, you can either use x-clip package, or join the LAION discord, where a lot of replication efforts are already underway. Then, you will need to train the decoder, which learns to generate images based on the image embedding coming from the trained CLIP.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    TorchAudio

    TorchAudio

    Data manipulation and transformation for audio signal processing

    The aim of torchaudio is to apply PyTorch to the audio domain. By supporting PyTorch, torchaudio follows the same philosophy of providing strong GPU acceleration, having a focus on trainable features through the autograd system, and having consistent style (tensor names and dimension names). Therefore, it is primarily a machine learning library and not a general signal processing library. The benefits of PyTorch can be seen in torchaudio through having all the computations be through PyTorch...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Bard API

    Bard API

    The unofficial python package that returns response of Google Bard

    The Python package returns a response of Google Bard through the value of the cookie. This package is designed for application to the Python package ExceptNotifier and Co-Coder. Please note that the bardapi is not a free service, but rather a tool provided to assist developers with testing certain functionalities due to the delayed development and release of Google Bard's API. It has been designed with a lightweight structure that can easily adapt to the emergence of an official API. Therefore...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    LLM Foundry

    LLM Foundry

    LLM training code for MosaicML foundation models

    Introducing MPT-7B, the first entry in our MosaicML Foundation Series. MPT-7B is a transformer trained from scratch on 1T tokens of text and code. It is open source, available for commercial use, and matches the quality of LLaMA-7B. MPT-7B was trained on the MosaicML platform in 9.5 days with zero human intervention at a cost of ~$200k. Large language models (LLMs) are changing the world, but for those outside well-resourced industry labs, it can be extremely difficult to train and deploy...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Segmentation Models

    Segmentation Models

    Segmentation models with pretrained backbones. PyTorch

    ... results (higher metric score and faster convergence). It is not necessary in case you train the whole model, not only the decoder. Pytorch Image Models (a.k.a. timm) has a lot of pretrained models and interface which allows using these models as encoders in smp, however, not all models are supported. Input channels parameter allows you to create models, which process tensors with an arbitrary number of channels.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    JSONLab

    JSONLab

    JSONLab: compact, portable, robust JSON/binary-JSON encoder

    JSONLab is a free and open-source JSON/UBJSON/MessagePack encoder and decoder written in the native MATLAB language. It can be used to convert a MATLAB data structure (array, struct, cell, struct array, cell array, and objects) into JSON/UBJSON/MessagePack formatted strings and files, or to parse a JSON/UBJSON/MessagePack file into MATLAB data structure. JSONLab supports nearly all versions of MATLAB and GNU Octave (a free MATLAB clone). The development of JSONLab is currently funded by the US...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    DragonOS
    *Until you install the operating system, the default user = live / no password. DragonOS Noble (24.04) DragonOS FocalX (22.04) and DragonOS Focal (20.04) are out-of-the-box Lubuntu based x86_64 operating systems for anyone interested in software defined radios. All source installed software is located in the /usr/src directory while the remaining software was installed by package managers. What is DragonOS and why do you want it? The shortest distance between two points is a...
    Leader badge
    Downloads: 1,536 This Week
    Last Update:
    See Project
  • 18
    NÜWA - Pytorch

    NÜWA - Pytorch

    Implementation of NÜWA, attention network for text to video synthesis

    Implementation of NÜWA, state of the art attention network for text-to-video synthesis, in Pytorch. It also contains an extension into video and audio generation, using a dual decoder approach. It seems as though a diffusion-based method has taken the new throne for SOTA. However, I will continue on with NUWA, extending it to use multi-headed codes + hierarchical causal transformer. I think that direction is untapped for improving on this line of work. In the paper, they also present a way...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    CPT

    CPT

    CPT: A Pre-Trained Unbalanced Transformer

    A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Generation. We replace the old BERT vocabulary with a larger one of size 51271 built from the training data, in which we 1) add missing 6800+ Chinese characters (most of them are traditional Chinese characters); 2) remove redundant tokens (e.g. Chinese character tokens with ## prefix); 3) add some English tokens to reduce OOV. Position Embeddings We extend the max_position_embeddings from 512 to 1024. We...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    CSM (Conversational Speech Model)

    CSM (Conversational Speech Model)

    A Conversational Speech Generation Model

    The CSM (Conversational Speech Model) is a speech generation model developed by Sesame AI that creates RVQ audio codes from text and audio inputs. It uses a Llama backbone and a smaller audio decoder to produce audio codes for realistic speech synthesis. The model has been fine-tuned for interactive voice demos and is hosted on platforms like Hugging Face for testing. CSM offers a flexible setup and is compatible with CUDA-enabled GPUs for efficient execution.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 21
    Karlo

    Karlo

    Text-conditional image generation model based on OpenAI's unCLIP

    Karlo is a text-conditional image generation model based on OpenAI's unCLIP architecture with the improvement over the standard super-resolution model from 64px to 256px, recovering high-frequency details only in the small number of denoising steps. We train all components from scratch on 115M image-text pairs including COYO-100M, CC3M, and CC12M. In the case of Prior and Decoder, we use ViT-L/14 provided by OpenAI’s CLIP repository. Unlike the original implementation of unCLIP, we replace...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 22
    DALL·E Mini

    DALL·E Mini

    Generate images from a text prompt

    DALL·E Mini, generate images from a text prompt. OpenAI had the first impressive model for generating images with DALL·E. Craiyon/DALL·E mini is an attempt at reproducing those results with an open-source model. The model is trained by looking at millions of images from the internet with their associated captions. Over time, it learns how to draw an image from a text prompt. Some concepts are learned from memory as they may have seen similar images. However, it can also learn how to create...
    Downloads: 8 This Week
    Last Update:
    See Project
  • 23
    LaMDA-pytorch

    LaMDA-pytorch

    Open-source pre-training implementation of Google's LaMDA in PyTorch

    Open-source pre-training implementation of Google's LaMDA research paper in PyTorch. The totally not sentient AI. This repository will cover the 2B parameter implementation of the pre-training architecture as that is likely what most can afford to train. You can review Google's latest blog post from 2022 which details LaMDA here. You can also view their previous blog post from 2021 on the model.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Deep learning time series forecasting

    Deep learning time series forecasting

    Deep learning PyTorch library for time series forecasting

    ... forecasting framework. Currently, Task-TS from CoronaWhy primarily maintains this repository. Pull requests are welcome. Historically, this repository provided open-source benchmarks and codes for flash flood and river flow forecasting. Full transformer (SimpleTransformer in model_dict): The full original transformer with all 8 encoder and decoder blocks. Requires passing the target in at inference.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 25
    Reformer PyTorch

    Reformer PyTorch

    Reformer, the efficient Transformer, in Pytorch

    This is a Pytorch implementation of Reformer. It includes LSH attention, reversible network, and chunking. It has been validated with an auto-regressive task (enwik8).
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • Next
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.