Showing 244 open source projects for "tensorflow"

View related business solutions
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    The database for AI-powered applications.

    MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
    Start Free
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1
    Scalable Distributed Deep-RL

    Scalable Distributed Deep-RL

    A TensorFlow implementation of Scalable Distributed Deep-RL

    Scalable Agent is the open implementation of IMPALA (Importance Weighted Actor-Learner Architectures), a highly scalable distributed reinforcement learning framework developed by Google DeepMind. IMPALA introduced a new paradigm for efficiently training agents across large-scale environments by decoupling acting and learning processes. In this architecture, multiple actor processes interact with their environments in parallel to collect trajectories, which are then asynchronously sent to a...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    automl-gs

    automl-gs

    Provide an input CSV and a target field to predict, generate a model

    Give an input CSV file and a target field you want to predict to automl-gs, and get a trained high-performing machine learning or deep learning model plus native Python code pipelines allowing you to integrate that model into any prediction workflow. No black box: you can see exactly how the data is processed, and how the model is constructed, and you can make tweaks as necessary. automl-gs is an AutoML tool which, unlike Microsoft's NNI, Uber's Ludwig, and TPOT, offers a zero code/model...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    NeuroNER

    NeuroNER

    Named-entity recognition using neural networks

    Named-entity recognition (NER) aims at identifying entities of interest in the text, such as location, organization and temporal expression. Identified entities can be used in various downstream applications such as patient note de-identification and information extraction systems. They can also be used as features for machine learning systems for other natural language processing tasks. Leverages the state-of-the-art prediction capabilities of neural networks (a.k.a. "deep learning") Is...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Tacotron-2

    Tacotron-2

    DeepMind's Tacotron-2 Tensorflow implementation

    Tacotron-2 is a TensorFlow implementation of DeepMind’s Tacotron-2 end-to-end text-to-speech architecture, which predicts mel spectrograms from raw text and then feeds them to a neural vocoder such as WaveNet. It reproduces the original paper’s hyperparameters exactly via paper_hparams.py, while also offering a tuned hparams.py with extra improvements that often yield better audio quality in practice.
    Downloads: 3 This Week
    Last Update:
    See Project
  • Keep company data safe with Chrome Enterprise Icon
    Keep company data safe with Chrome Enterprise

    Protect your business with AI policies and data loss prevention in the browser

    Make AI work your way with Chrome Enterprise. Block unapproved sites and set custom data controls that align with your company's policies.
    Download Chrome
  • 5
    Tensorpack

    Tensorpack

    A Neural Net Training Interface on TensorFlow, with focus on speed

    Tensorpack is a neural network training interface based on TensorFlow v1. Uses TensorFlow in the efficient way with no extra overhead. On common CNNs, it runs training 1.2~5x faster than the equivalent Keras code. Your training can probably gets faster if written with Tensorpack. Scalable data-parallel multi-GPU / distributed training strategy is off-the-shelf to use. Squeeze the best data loading performance of Python with tensorpack.dataflow.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    InfoGAN

    InfoGAN

    Code for reproducing key results in the paper

    ...That extra incentive encourages the generator to structure its latent space in a way where certain latent variables control meaningful, distinct factors (e.g. rotation, width, stroke thickness) in the output images. The repository includes code for experiments (e.g. on MNIST), launcher scripts, and some tests. It depends on a development version of TensorFlow (the code expects features not in older stable releases), and also uses other libraries like prettytensor and progressbar.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Deepvoice3_pytorch

    Deepvoice3_pytorch

    PyTorch implementation of convolutional neural networks

    An open source implementation of Deep Voice 3: Scaling Text-to-Speech with Convolutional Sequence Learning.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    TensorFlow Internals

    TensorFlow Internals

    Open source ebook about TensorFlow kernel and implementation

    It is open source ebook about TensorFlow kernel and implementation mechanism, including programming model, computation graph, and distributed training for machine learning.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    OpenSeq2Seq

    OpenSeq2Seq

    Toolkit for efficient experimentation with Speech Recognition

    OpenSeq2Seq is a TensorFlow-based toolkit for efficient experimentation with sequence-to-sequence models across speech and NLP tasks. Its core goal is to give researchers a flexible, modular framework for building and training encoder–decoder architectures while fully leveraging distributed and mixed-precision training. The toolkit includes ready-made models for neural machine translation, automatic speech recognition, speech synthesis, language modeling, and additional NLP tasks such as sentiment analysis. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • Cloud-based help desk software with ServoDesk Icon
    Cloud-based help desk software with ServoDesk

    Full access to Enterprise features. No credit card required.

    What if You Could Automate 90% of Your Repetitive Tasks in Under 30 Days? At ServoDesk, we help businesses like yours automate operations with AI, allowing you to cut service times in half and increase productivity by 25% - without hiring more staff.
    Try ServoDesk for free
  • 10

    W2MHS-DNN

    Open Source White Matter Hyperintensities Segmentation Toolbox

    Wisconsin White Matter Hyperintensity Segmentation [W2MHS] and Quantification Toolbox is an open source MatLab toolbox designed for detecting and quantifying White Matter Hyperintensities (WMH) in Alzheimer’s and aging related neurological disorders. WMHs arise as bright regions on T2- weighted FLAIR images. They reflect comorbid neural injury or cerebral vascular disease burden. Their precise detection is of interest in Alzheimer’s disease (AD) with regard to its prognosis. Our toolbox...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    TensorFlow-ZH

    TensorFlow-ZH

    Chinese version of the official document of TensorFlow

    The tensorflow-zh repository is a Chinese translation of the official TensorFlow documentation, organized to make the core guides, tutorials, and reference material accessible to Chinese speakers. It was initiated shortly after TensorFlow’s open-sourcing, with translation and proofreading contributions from a community of volunteers who aimed to bridge the language barrier for learners in China and other Mandarin communities.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 12
    Gin Config

    Gin Config

    Gin provides a lightweight configuration framework for Python

    ...Users can define default parameter values, scoped configurations, and modular references to functions, classes, or instances, resulting in highly composable and dynamic experiment setups. Gin is particularly popular in TensorFlow and PyTorch projects, where researchers and developers need to tune numerous interdependent parameters across models, datasets, optimizers, and training pipelines.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 13
    Exposure

    Exposure

    Learning infinite-resolution image processing with GAN and RL

    Learning infinite-resolution image processing with GAN and RL from unpaired image datasets, using a differentiable photo editing model. ACM Transactions on Graphics (presented at SIGGRAPH 2018) Exposure is originally designed for RAW photos, which assumes 12+ bit color depth and linear "RGB" color space (or whatever we get after demosaicing). jpg and png images typically have only 8-bit color depth (except 16-bit pngs) and the lack of information (dynamic range/activation resolution) may...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    stanford-tensorflow-tutorials

    stanford-tensorflow-tutorials

    This repository contains code examples for the Stanford's course

    This repository contains code examples for the course CS 20: TensorFlow for Deep Learning Research. It will be updated as the class progresses. Detailed syllabus and lecture notes can be found in the site. For this course, I use python3.6 and TensorFlow 1.4.1.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    DC-TTS

    DC-TTS

    TensorFlow Implementation of DC-TTS: yet another text-to-speech model

    DC-TTS is a TensorFlow implementation of the DC-TTS architecture, a fully convolutional text-to-speech system designed to be efficiently trainable while producing natural speech. It follows the “Efficiently Trainable Text-to-Speech System Based on Deep Convolutional Networks with Guided Attention” paper, but the author adapts and extends the design to make it practical for real experiments.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 16
    DIGITS

    DIGITS

    Deep Learning GPU training system

    The NVIDIA Deep Learning GPU Training System (DIGITS) puts the power of deep learning into the hands of engineers and data scientists. DIGITS can be used to rapidly train the highly accurate deep neural network (DNNs) for image classification, segmentation and object detection tasks. DIGITS simplifies common deep learning tasks such as managing data, designing and training neural networks on multi-GPU systems, monitoring performance in real-time with advanced visualizations, and selecting...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Edward

    Edward

    A probabilistic programming language in TensorFlow

    ...It is a testbed for fast experimentation and research with probabilistic models, ranging from classical hierarchical models on small data sets to complex deep probabilistic models on large data sets. Edward fuses three fields, Bayesian statistics and machine learning, deep learning, and probabilistic programming. Edward is built on TensorFlow. It enables features such as computational graphs, distributed training, CPU/GPU integration, automatic differentiation, and visualization with TensorBoard. Expectation-Maximization, pseudo-marginal and ABC methods, and message passing algorithms.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 18
    Image classification models for Keras

    Image classification models for Keras

    Keras code and weights files for popular deep learning models

    All architectures are compatible with both TensorFlow and Theano, and upon instantiation the models will be built according to the image dimension ordering set in your Keras configuration file at ~/.keras/keras.json. For instance, if you have set image_dim_ordering=tf, then any model loaded from this repository will get built according to the TensorFlow dimension ordering convention, "Width-Height-Depth".
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    AI-Blocks

    AI-Blocks

    A powerful and intuitive WYSIWYG to create Machine Learning models

    ...The concept of AI-Blocs is to have a simple scene with draggable objects that have scripts attached to them. The model can be run directly on the editor or be exported to a standalone script that runs on Tensorflow. Variables are parsed from python scripts and can be edited from the AI-Blocs properties panel. To run your model simply press the "Play" button and let the magic happen! The project requires Python and Tensorflow to run projects. You can still create and edit projects without these dependencies. To run AI-Blocs, download the project archive and launch AI-Blocs.exe.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 20
    kcws

    kcws

    Deep Learning Chinese Word Segment

    Deep learning chinese word segment. Install the bazel code construction tool and install tensorflow (currently this project requires tf 1.0.0alpha version or above) Switch to the code directory of this project and run ./configure. Compile background service. Pay attention to the public account of waiting for words and reply to kcws to get the corpus download address. Extract the corpus to a directory. Change to the code directory.After installing tensorflow, switch to the kcws code directory. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    BlockSparse

    BlockSparse

    Efficient GPU kernels for block-sparse matrix multiplication

    ...The repo implements both blocksparse and blockwise convolution/transpose-convolution primitives, with support for preparing, executing, and verifying those ops on NVIDIA GPUs. In addition to low-level kernels, it includes wrapper code for integrating with TensorFlow, example scripts (e.g. a transformer on the enwik8 dataset), transformer logic that uses blocksparse operations, and debugging helpers.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Tangent

    Tangent

    Source-to-source debuggable derivatives in pure Python

    ...Tangent works on a large and growing subset of Python, provides extra autodiff features other Python ML libraries don't have, has reasonable performance, and is compatible with TensorFlow and NumPy.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    Five video classification methods

    Five video classification methods

    Code that accompanies my blog post outlining five video classification

    Classifying video presents unique challenges for machine learning models. As I’ve covered in my previous posts, video has the added (and interesting) property of temporal features in addition to the spatial features present in 2D images. While this additional information provides us more to work with, it also requires different network architectures and, often, adds larger memory and computational demands.We won’t use any optical flow images. This reduces model complexity, training time, and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Deep Learning with Keras and Tensorflow

    Deep Learning with Keras and Tensorflow

    Introduction to Deep Neural Networks with Keras and Tensorflow

    Introduction to Deep Neural Networks with Keras and Tensorflow. To date tensorflow comes in two different packages, namely tensorflow and tensorflow-gpu, whether you want to install the framework with CPU-only or GPU support, respectively. NVIDIA Drivers and CuDNN must be installed and configured before hand. Please refer to the official Tensorflow documentation for further details. Since version 0.9 Theano introduced the libgpuarray in the stable release (it was previously only available in the development version). ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Learning to Learn in TensorFlow

    Learning to Learn in TensorFlow

    Learning to Learn in TensorFlow

    ...The repository provides code for training and evaluating learned optimizers that can generalize across different problem types, such as quadratic functions and image classification tasks (MNIST and CIFAR-10). Using TensorFlow, it defines a meta-optimizer model that learns by observing and adapting to the optimization trajectories of other models. The project allows users to compare performance between traditional optimizers and the learned optimizer (L2L) on various benchmarks, demonstrating how optimization strategies can be learned through experience. ...
    Downloads: 0 This Week
    Last Update:
    See Project