Showing 297 open source projects for "python neural"

View related business solutions
  • Resolve Support Tickets 2x Faster​ with ServoDesk Icon
    Resolve Support Tickets 2x Faster​ with ServoDesk

    Full access to Enterprise features. No credit card required.

    What if You Could Automate 90% of Your Repetitive Tasks in Under 30 Days? At ServoDesk, we help businesses like yours automate operations with AI, allowing you to cut service times in half and increase productivity by 25% - without hiring more staff.
    Try ServoDesk for free
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1
    PaddleNLP

    PaddleNLP

    Easy-to-use and powerful NLP library with Awesome model zoo

    PaddleNLP It is a natural language processing development library for flying paddles, with Easy-to-use text area API, Examples of applications for multiple scenarios, and High-performance distributed training Three major features, aimed at improving the modeling efficiency of the flying oar developer's text field, aiming to improve the developer's development efficiency in the text field, and provide rich examples of NLP applications. Provide rich industry-level pre-task capabilities...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Segmentation Models

    Segmentation Models

    Segmentation models with pretrained backbones. PyTorch

    Segmentation models with pre trained backbones. High-level API (just two lines to create a neural network) 9 models architectures for binary and multi class segmentation (including legendary Unet) 124 available encoders (and 500+ encoders from timm) All encoders have pre-trained weights for faster and better convergence. Popular metrics and losses for training routines. All encoders have pretrained weights. Preparing your data the same way as during weights pre-training may give you better...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    DeepLabCut

    DeepLabCut

    Implementation of DeepLabCut

    ...This package is collaboratively developed by the Mathis Group & Mathis Lab at EPFL (releases prior to 2.1.9 were developed at Harvard University). The code is freely available and easy to install in a few clicks with Anaconda (and pypi). DeepLabCut is an open-source Python package for animal pose estimation.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 4
    Zeta

    Zeta

    Build high-performance AI models with modular building blocks

    zeta is a deep learning library focused on providing cutting-edge AI and neural network models with a strong emphasis on research-grade architectures. It includes state-of-the-art implementations for rapid experimentation and model building.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Free and Open Source HR Software Icon
    Free and Open Source HR Software

    OrangeHRM provides a world-class HRIS experience and offers everything you and your team need to be that HR hero you know that you are.

    Give your HR team the tools they need to streamline administrative tasks, support employees, and make informed decisions with the OrangeHRM free and open source HR software.
    Learn More
  • 5
    Neural Network Intelligence

    Neural Network Intelligence

    AutoML toolkit for automate machine learning lifecycle

    Neural Network Intelligence is an open source AutoML toolkit for automate machine learning lifecycle, including feature engineering, neural architecture search, model compression and hyper-parameter tuning. NNI (Neural Network Intelligence) is a lightweight but powerful toolkit to help users automate feature engineering, neural architecture search, hyperparameter tuning and model compression. The tool manages automated machine learning (AutoML) experiments, dispatches and runs experiments'...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    higgsfield

    higgsfield

    Fault-tolerant, highly scalable GPU orchestration

    Higgsfield is an open-source, fault-tolerant, highly scalable GPU orchestration, and a machine learning framework designed for training models with billions to trillions of parameters, such as Large Language Models (LLMs).
    Downloads: 1 This Week
    Last Update:
    See Project
  • 7
    Synapse Machine Learning

    Synapse Machine Learning

    Simple and distributed Machine Learning

    SynapseML (previously MMLSpark) is an open source library to simplify the creation of scalable machine learning pipelines. SynapseML builds on Apache Spark and SparkML to enable new kinds of machine learning, analytics, and model deployment workflows. SynapseML adds many deep learning and data science tools to the Spark ecosystem, including seamless integration of Spark Machine Learning pipelines with the Open Neural Network Exchange (ONNX), LightGBM, The Cognitive Services, Vowpal Wabbit,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Neuroglancer

    Neuroglancer

    WebGL-based viewer for volumetric data

    Neuroglancer is a WebGL-based visualization tool designed for exploring large-scale volumetric and neuroimaging datasets directly in the browser. It allows users to interactively view arbitrary 2D and 3D cross-sections of volumetric data alongside 3D meshes and skeleton models, enabling precise examination of neural structures and biological imaging results. Its multi-pane interface synchronizes multiple orthogonal views with a central 3D viewport, making it ideal for analyzing complex brain...
    Downloads: 6 This Week
    Last Update:
    See Project
  • 9
    Jina

    Jina

    Build cross-modal and multimodal applications on the cloud

    Jina is a framework that empowers anyone to build cross-modal and multi-modal applications on the cloud. It uplifts a PoC into a production-ready service. Jina handles the infrastructure complexity, making advanced solution engineering and cloud-native technologies accessible to every developer. Build applications that deliver fresh insights from multiple data types such as text, image, audio, video, 3D mesh, PDF with Jina AI’s DocArray. Polyglot gateway that supports gRPC, Websockets, HTTP,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • InEight is a leader in construction project controls software Icon
    InEight is a leader in construction project controls software

    InEight serves contractors, owners, and engineers in capital construction

    Minimize risks, gain operational efficiency, control project costs, and make confident, informed decisions. InEight software has your back during every stage of construction, from accurate pre-planning to predictable execution and completion. When project teams collaborate effectively, every decision is backed by precise, authoritative insights.
    Learn More
  • 10
    Kaleidoscope-SDK

    Kaleidoscope-SDK

    User toolkit for analyzing and interfacing with Large Language Models

    kaleidoscope-sdk is a Python module used to interact with large language models hosted via the Kaleidoscope service available at: https://github.com/VectorInstitute/kaleidoscope. It provides a simple interface to launch LLMs on an HPC cluster, asking them to perform basic features like text generation, but also retrieve intermediate information from inside the model, such as log probabilities and activations. Users must authenticate using their Vector Institute cluster credentials. This can...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    tslab

    tslab

    Interactive JavaScript and TypeScript programming with Jupyter

    tslab is an interactive programming environment and REPL with Jupyter for JavaScript and TypeScript users. You can write and execute JavaScript and TypeScript interactively on browsers and save results as Jupyter notebooks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    EvoTorch

    EvoTorch

    Advanced evolutionary computation library built on top of PyTorch

    EvoTorch is an evolutionary optimization framework built on top of PyTorch, developed by NNAISENSE. It is designed for large-scale optimization problems, particularly those that require evolutionary algorithms rather than gradient-based methods.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Homemade Machine Learning

    Homemade Machine Learning

    Python examples of popular machine learning algorithms

    ...The purpose is pedagogical: you’ll see linear regression, logistic regression, k-means clustering, neural nets, decision trees, etc., built in Python using fundamentals like NumPy and Matplotlib, not hidden behind API calls. It is well suited for learners who want to move beyond library usage to understand how algorithms operate internally—how cost functions, gradients, updates and predictions work.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    MLJAR Studio

    MLJAR Studio

    Python package for AutoML on Tabular Data with Feature Engineering

    We are working on new way for visual programming. We developed a desktop application called MLJAR Studio. It is a notebook-based development environment with interactive code recipes and a managed Python environment. All running locally on your machine. We are waiting for your feedback. The mljar-supervised is an Automated Machine Learning Python package that works with tabular data. It is designed to save time for a data scientist. It abstracts the common way to preprocess the data,...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 15
    AtomAI

    AtomAI

    Deep and Machine Learning for Microscopy

    AtomAI is a Pytorch-based package for deep and machine-learning analysis of microscopy data that doesn't require any advanced knowledge of Python or machine learning. The intended audience is domain scientists with a basic understanding of how to use NumPy and Matplotlib. It was developed by Maxim Ziatdinov at Oak Ridge National Lab. The purpose of the AtomAI is to provide an environment that bridges the instrument-specific libraries and general physical analysis by enabling the seamless deployment of machine learning algorithms including deep convolutional neural networks, invariant variational autoencoders, and decomposition/unmixing techniques for image and hyperspectral data analysis. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    towhee

    towhee

    Framework that is dedicated to making neural data processing

    Towhee is an open-source machine-learning pipeline that helps you encode your unstructured data into embeddings. You can use our Python API to build a prototype of your pipeline and use Towhee to automatically optimize it for production-ready environments. From images to text to 3D molecular structures, Towhee supports data transformation for nearly 20 different unstructured data modalities. We provide end-to-end pipeline optimizations, covering everything from data decoding/encoding, to...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    fastai

    fastai

    Deep learning library

    fastai is a deep learning library which provides practitioners with high-level components that can quickly and easily provide state-of-the-art results in standard deep learning domains, and provides researchers with low-level components that can be mixed and matched to build new approaches. It aims to do both things without substantial compromises in ease of use, flexibility, or performance. This is possible thanks to a carefully layered architecture, which expresses common underlying...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Optax

    Optax

    Optax is a gradient processing and optimization library for JAX

    Optax is a gradient processing and optimization library for JAX. It is designed to facilitate research by providing building blocks that can be recombined in custom ways in order to optimize parametric models such as, but not limited to, deep neural networks. We favor focusing on small composable building blocks that can be effectively combined into custom solutions. Others may build upon these basic components in more complicated abstractions. Whenever reasonable, implementations prioritize...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    PyTorch Geometric

    PyTorch Geometric

    Geometric deep learning extension library for PyTorch

    It consists of various methods for deep learning on graphs and other irregular structures, also known as geometric deep learning, from a variety of published papers. In addition, it consists of an easy-to-use mini-batch loader for many small and single giant graphs, a large number of common benchmark datasets (based on simple interfaces to create your own), and helpful transforms, both for learning on arbitrary graphs as well as on 3D meshes or point clouds. We have outsourced a lot of...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    CounterfactualExplanations.jl

    CounterfactualExplanations.jl

    A package for Counterfactual Explanations and Algorithmic Recourse

    CounterfactualExplanations.jl is a package for generating Counterfactual Explanations (CE) and Algorithmic Recourse (AR) for black-box algorithms. Both CE and AR are related tools for explainable artificial intelligence (XAI). While the package is written purely in Julia, it can be used to explain machine learning algorithms developed and trained in other popular programming languages like Python and R. See below for a short introduction and other resources or dive straight into the docs.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    FLAML

    FLAML

    A fast library for AutoML and tuning

    FLAML is a lightweight Python library that finds accurate machine learning models automatically, efficiently and economically. It frees users from selecting learners and hyperparameters for each learner. For common machine learning tasks like classification and regression, it quickly finds quality models for user-provided data with low computational resources.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Albumentations

    Albumentations

    Fast image augmentation library and an easy-to-use wrapper

    Albumentations is a computer vision tool that boosts the performance of deep convolutional neural networks. Albumentations is a Python library for fast and flexible image augmentations. Albumentations efficiently implements a rich variety of image transform operations that are optimized for performance, and does so while providing a concise, yet powerful image augmentation interface for different computer vision tasks, including object classification, segmentation, and detection. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 23
    Moshi

    Moshi

    A speech-text foundation model for real time dialogue

    Moshi is a speech-text foundation model and full-duplex spoken dialogue framework. It uses Mimi, a state-of-the-art streaming neural audio codec. Mimi processes 24 kHz audio, down to a 12.5 Hz representation with a bandwidth of 1.1 kbps, in a fully streaming manner (latency of 80ms, the frame size), yet performs better than existing, non-streaming, codecs like SpeechTokenizer (50 Hz, 4kbps), or SemantiCodec (50 Hz, 1.3kbps). Moshi models two streams of audio: one corresponds to Moshi, and...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 24
    CLIP

    CLIP

    CLIP, Predict the most relevant text snippet given an image

    CLIP (Contrastive Language-Image Pretraining) is a neural model that links images and text in a shared embedding space, allowing zero-shot image classification, similarity search, and multimodal alignment. It was trained on large sets of (image, caption) pairs using a contrastive objective: images and their matching text are pulled together in embedding space, while mismatches are pushed apart. Once trained, you can give it any text labels and ask it to pick which label best matches a given...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    VGGSfM

    VGGSfM

    VGGSfM: Visual Geometry Grounded Deep Structure From Motion

    VGGSfM is an advanced structure-from-motion (SfM) framework jointly developed by Meta AI Research (GenAI) and the University of Oxford’s Visual Geometry Group (VGG). It reconstructs 3D geometry, dense depth, and camera poses directly from unordered or sequential images and videos. The system combines learned feature matching and geometric optimization to generate high-quality camera calibrations, sparse/dense point clouds, and depth maps in standard COLMAP format. Version 2.0 adds support...
    Downloads: 1 This Week
    Last Update:
    See Project