Python LiDAR Software

View 60 business solutions

Browse free open source Python LiDAR Software and projects below. Use the toggles on the left to filter open source Python LiDAR Software by OS, license, language, programming language, and project status.

  • Auth0 for AI Agents now in GA Icon
    Auth0 for AI Agents now in GA

    Ready to implement AI with confidence (without sacrificing security)?

    Connect your AI agents to apps and data more securely, give users control over the actions AI agents can perform and the data they can access, and enable human confirmation for critical agent actions.
    Start building today
  • Cloud tools for web scraping and data extraction Icon
    Cloud tools for web scraping and data extraction

    Deploy pre-built tools that crawl websites, extract structured data, and feed your applications. Reliable web data without maintaining scrapers.

    Automate web data collection with cloud tools that handle anti-bot measures, browser rendering, and data transformation out of the box. Extract content from any website, push to vector databases for RAG workflows, or pipe directly into your apps via API. Schedule runs, set up webhooks, and connect to your existing stack. Free tier available, then scale as you need to.
    Explore 10,000+ tools
  • 1
    BEVFormer

    BEVFormer

    Implementation of BEVFormer, a camera-only framework

    3D visual perception tasks, including 3D detection and map segmentation based on multi-camera images, are essential for autonomous driving systems. In this work, we present a new framework termed BEVFormer, which learns unified BEV representations with spatiotemporal transformers to support multiple autonomous driving perception tasks. In a nutshell, BEVFormer exploits both spatial and temporal information by interacting with spatial and temporal space through predefined grid-shaped BEV queries. To aggregate spatial information, we design spatial cross-attention that each BEV query extracts the spatial features from the regions of interest across camera views. For temporal information, we propose temporal self-attention to recurrently fuse the history BEV information. Our approach achieves the new state-of-the-art 56.9\% in terms of NDS metric on the nuScenes \texttt{test} set, which is 9.0 points higher than previous best arts and on par with the performance of LiDAR-based baseline.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    CSVSplitter
    # CSV Splitter Uma ferramenta para dividir arquivos CSV em múltiplos arquivos com base na quantidade de registros especificada, mantendo a integridade dos dados e permitindo configurações de charset, separador e formatação. Ideal para lidar com grandes arquivos CSV que precisam ser fragmentados para melhor manuseio e processamento. ## Funcionalidades - **Divisão de CSV**: Divide o arquivo original em múltiplos arquivos CSV, com o número de registros por arquivo definido pelo usuário. - **Detecção Automática de Charset e Separador**: O charset e o separador do arquivo de origem podem ser detectados automaticamente ou especificados manualmente. - **Configuração de Destino Personalizável**: Permite definir charset e separador de destino. - **Formatação de Dados**: Formatação opcional para os padrões BR, EUA, EU e UK, com exemplos para ajudar na escolha do formato desejado. - **Interface Gráfica Intuitiva**: Interface com `Tkinter`, incluindo barra de progresso e log do proc
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3

    Planar Roof Top Detection in LiDAR

    This tool detects and classifies roof tops from raw spatial LiDAR

    A new algorithm for extracting roof tops was developed. Using the assumption that roof tops are planar in construction, a new approach was developed using volume of point clouds to determine whether a cluster contains planar points. This approach yields very promising results and with attention applied to its weaknesses, should provide another algorithm which can rival currently available roof top detection methods.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Segments.ai

    Segments.ai

    Segments.ai Python SDK

    Multi-sensor labeling platform for robotics and autonomous vehicles. The platform for fast and accurate multi-sensor data annotation. Label in-house or with an external workforce. Intuitive labeling interfaces for images, videos, and 3D point clouds (lidar and RGBD). Obtain segmentation labels, vector labels, and more. Our labeling interfaces are set up to label fast and precise. Powerful ML assistance lets you label faster and reduce costs. Integrate data labeling into your existing ML pipelines and workflows using our simple yet powerful Python SDK. Onboard your own workforce or use one of our workforce partners. Our management tools make it easy to label and review large datasets together. Now, Segments.ai is providing a data labeling backbone to help robotics and AV companies build better datasets.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Reach Your Audience with Rise Vision, the #1 Cloud Digital Signage Software Solution Icon
    Reach Your Audience with Rise Vision, the #1 Cloud Digital Signage Software Solution

    K-12 Schools, Higher Education, Businesses, Restaurants

    Rise Vision is the #1 digital signage company, offering easy-to-use cloud digital signage software compatible with any player across multiple screens. Forget about static displays. Save time and boost sales with 500+ customizable content templates for your screens. If you ever need help, get free training and exceptionally fast support.
    Learn More
  • 5
    whiteboxgui

    whiteboxgui

    An interactive GUI for WhiteboxTools in a Jupyter-based environment

    The whiteboxgui Python package is a Jupyter frontend for WhiteboxTools, an advanced geospatial data analysis platform developed by Prof. John Lindsay (webpage; jblindsay) at the University of Guelph's Geomorphometry and Hydrogeomatics Research Group. WhiteboxTools can be used to perform common geographical information systems (GIS) analysis operations, such as cost-distance analysis, distance buffering, and raster reclassification. Remote sensing and image processing tasks include image enhancement (e.g. panchromatic sharpening, contrast adjustments), image mosaicing, numerous filtering operations, simple classification (k-means), and common image transformations. WhiteboxTools also contains advanced tooling for spatial hydrological analysis (e.g. flow-accumulation, watershed delineation, stream network analysis, sink removal), terrain analysis (e.g. common terrain indices such as slope, curvatures, wetness index, hillshading; hypsometric analysis; etc.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next