Python LiDAR Software

View 60 business solutions

Browse free open source Python LiDAR Software and projects below. Use the toggles on the left to filter open source Python LiDAR Software by OS, license, language, programming language, and project status.

  • Fully managed relational database service for MySQL, PostgreSQL, and SQL Server Icon
    Fully managed relational database service for MySQL, PostgreSQL, and SQL Server

    Focus on your application, and leave the database to us

    Cloud SQL manages your databases so you don't have to, so your business can run without disruption. It automates all your backups, replication, patches, encryption, and storage capacity increases to give your applications the reliability, scalability, and security they need.
    Try for free
  • eProcurement Software Icon
    eProcurement Software

    Enterprises and companies seeking a solution to manage all their procurement operations and processes

    eBuyerAssist by Eyvo is a cloud-based procurement solution designed for businesses of all sizes and industries. Fully modular and scalable, it streamlines the entire procurement lifecycle—from requisition to fulfillment. The platform includes powerful tools for strategic sourcing, supplier management, warehouse operations, and contract oversight. Additional modules cover purchase orders, approval workflows, inventory and asset management, customer orders, budget control, cost accounting, invoice matching, vendor credit checks, and risk analysis. eBuyerAssist centralizes all procurement functions into a single, easy-to-use system—improving visibility, control, and efficiency across your organization. Whether you're aiming to reduce costs, enhance compliance, or align procurement with broader business goals, eBuyerAssist helps you get there faster, smarter, and with measurable results.
    Learn More
  • 1
    CSVSplitter
    # CSV Splitter Uma ferramenta para dividir arquivos CSV em múltiplos arquivos com base na quantidade de registros especificada, mantendo a integridade dos dados e permitindo configurações de charset, separador e formatação. Ideal para lidar com grandes arquivos CSV que precisam ser fragmentados para melhor manuseio e processamento. ## Funcionalidades - **Divisão de CSV**: Divide o arquivo original em múltiplos arquivos CSV, com o número de registros por arquivo definido pelo usuário. - **Detecção Automática de Charset e Separador**: O charset e o separador do arquivo de origem podem ser detectados automaticamente ou especificados manualmente. - **Configuração de Destino Personalizável**: Permite definir charset e separador de destino. - **Formatação de Dados**: Formatação opcional para os padrões BR, EUA, EU e UK, com exemplos para ajudar na escolha do formato desejado. - **Interface Gráfica Intuitiva**: Interface com `Tkinter`, incluindo barra de progresso e log do proc
    Downloads: 2 This Week
    Last Update:
    See Project
  • 2
    BEVFormer

    BEVFormer

    Implementation of BEVFormer, a camera-only framework

    3D visual perception tasks, including 3D detection and map segmentation based on multi-camera images, are essential for autonomous driving systems. In this work, we present a new framework termed BEVFormer, which learns unified BEV representations with spatiotemporal transformers to support multiple autonomous driving perception tasks. In a nutshell, BEVFormer exploits both spatial and temporal information by interacting with spatial and temporal space through predefined grid-shaped BEV queries. To aggregate spatial information, we design spatial cross-attention that each BEV query extracts the spatial features from the regions of interest across camera views. For temporal information, we propose temporal self-attention to recurrently fuse the history BEV information. Our approach achieves the new state-of-the-art 56.9\% in terms of NDS metric on the nuScenes \texttt{test} set, which is 9.0 points higher than previous best arts and on par with the performance of LiDAR-based baseline.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3

    Planar Roof Top Detection in LiDAR

    This tool detects and classifies roof tops from raw spatial LiDAR

    A new algorithm for extracting roof tops was developed. Using the assumption that roof tops are planar in construction, a new approach was developed using volume of point clouds to determine whether a cluster contains planar points. This approach yields very promising results and with attention applied to its weaknesses, should provide another algorithm which can rival currently available roof top detection methods.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Segments.ai

    Segments.ai

    Segments.ai Python SDK

    Multi-sensor labeling platform for robotics and autonomous vehicles. The platform for fast and accurate multi-sensor data annotation. Label in-house or with an external workforce. Intuitive labeling interfaces for images, videos, and 3D point clouds (lidar and RGBD). Obtain segmentation labels, vector labels, and more. Our labeling interfaces are set up to label fast and precise. Powerful ML assistance lets you label faster and reduce costs. Integrate data labeling into your existing ML pipelines and workflows using our simple yet powerful Python SDK. Onboard your own workforce or use one of our workforce partners. Our management tools make it easy to label and review large datasets together. Now, Segments.ai is providing a data labeling backbone to help robotics and AV companies build better datasets.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Incredable is the first DLT-secured platform that allows you to save time, eliminate errors, and ensure your organization is compliant all in one place. Icon
    Incredable is the first DLT-secured platform that allows you to save time, eliminate errors, and ensure your organization is compliant all in one place.

    For healthcare Providers and Facilities

    Incredable streamlines and simplifies the complex process of medical credentialing for hospitals and medical facilities, helping you save valuable time, reduce costs, and minimize risks. With Incredable, you can effortlessly manage all your healthcare providers and their credentials within a single, unified platform. Our state-of-the-art technology ensures top-notch data security, giving you peace of mind.
    Learn More
  • 5
    whiteboxgui

    whiteboxgui

    An interactive GUI for WhiteboxTools in a Jupyter-based environment

    The whiteboxgui Python package is a Jupyter frontend for WhiteboxTools, an advanced geospatial data analysis platform developed by Prof. John Lindsay (webpage; jblindsay) at the University of Guelph's Geomorphometry and Hydrogeomatics Research Group. WhiteboxTools can be used to perform common geographical information systems (GIS) analysis operations, such as cost-distance analysis, distance buffering, and raster reclassification. Remote sensing and image processing tasks include image enhancement (e.g. panchromatic sharpening, contrast adjustments), image mosaicing, numerous filtering operations, simple classification (k-means), and common image transformations. WhiteboxTools also contains advanced tooling for spatial hydrological analysis (e.g. flow-accumulation, watershed delineation, stream network analysis, sink removal), terrain analysis (e.g. common terrain indices such as slope, curvatures, wetness index, hillshading; hypsometric analysis; etc.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next