Showing 2 open source projects for "accurate"

View related business solutions
  • Retool your internal operations Icon
    Retool your internal operations

    Generate secure, production-grade apps that connect to your business data. Not just prototypes, but tools your team can actually deploy.

    Build internal software that meets enterprise security standards without waiting on engineering resources. Retool connects to your databases, APIs, and data sources while maintaining the permissions and controls you need. Create custom dashboards, admin tools, and workflows from natural language prompts—all deployed in your cloud with security baked in. Stop duct-taping operations together, start building in Retool.
    Build an app in Retool
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • 1
    Segments.ai

    Segments.ai

    Segments.ai Python SDK

    Multi-sensor labeling platform for robotics and autonomous vehicles. The platform for fast and accurate multi-sensor data annotation. Label in-house or with an external workforce. Intuitive labeling interfaces for images, videos, and 3D point clouds (lidar and RGBD). Obtain segmentation labels, vector labels, and more. Our labeling interfaces are set up to label fast and precise. Powerful ML assistance lets you label faster and reduce costs.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 2
    Direct LiDAR Odometry

    Direct LiDAR Odometry

    A lightweight and computationally-efficient frontend LiDAR odometry

    DLO is a lightweight and computationally efficient frontend LiDAR odometry solution with consistent and accurate localization. It features several algorithmic innovations that increase speed, accuracy, and robustness of pose estimation in perceptually challenging environments and has been extensively tested on aerial and legged robots. This work was part of NASA JPL Team CoSTAR's research and development efforts for the DARPA Subterranean Challenge, in which DLO was the primary state estimation component for our fleet of autonomous aerial vehicles.
    Downloads: 1 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next