Showing 11 open source projects for "python sample"

View related business solutions
  • Simple, Secure Domain Registration Icon
    Simple, Secure Domain Registration

    Get your domain at wholesale price. Cloudflare offers simple, secure registration with no markups, plus free DNS, CDN, and SSL integration.

    Register or renew your domain and pay only what we pay. No markups, hidden fees, or surprise add-ons. Choose from over 400 TLDs (.com, .ai, .dev). Every domain is integrated with Cloudflare's industry-leading DNS, CDN, and free SSL to make your site faster and more secure. Simple, secure, at-cost domain registration.
    Sign up for free
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    Build gen AI apps with an all-in-one modern database: MongoDB Atlas

    MongoDB Atlas provides built-in vector search and a flexible document model so developers can build, scale, and run gen AI apps without stitching together multiple databases. From LLM integration to semantic search, Atlas simplifies your AI architecture—and it’s free to get started.
    Start Free
  • 1
    Netron

    Netron

    Visualizer for neural network, deep learning, machine learning models

    Netron is a viewer for neural network, deep learning and machine learning models. Netron supports ONNX, Keras, TensorFlow Lite, Caffe, Darknet, Core ML, MNN, MXNet, ncnn, PaddlePaddle, Caffe2, Barracuda, Tengine, TNN, RKNN, MindSpore Lite, and UFF. Netron has experimental support for TensorFlow, PyTorch, TorchScript, OpenVINO, Torch, Arm NN, BigDL, Chainer, CNTK, Deeplearning4j, MediaPipe, ML.NET, scikit-learn, TensorFlow.js. There is an extense variety of sample model files to download or open...
    Downloads: 72 This Week
    Last Update:
    See Project
  • 2
    Lightly

    Lightly

    A python library for self-supervised learning on images

    A python library for self-supervised learning on images. We, at Lightly, are passionate engineers who want to make deep learning more efficient. That's why - together with our community - we want to popularize the use of self-supervised methods to understand and curate raw image data. Our solution can be applied before any data annotation step and the learned representations can be used to visualize and analyze datasets. This allows selecting the best core set of samples for model training...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 3
    Tiny CUDA Neural Networks

    Tiny CUDA Neural Networks

    Lightning fast C++/CUDA neural network framework

    This is a small, self-contained framework for training and querying neural networks. Most notably, it contains a lightning-fast "fully fused" multi-layer perceptron (technical paper), a versatile multiresolution hash encoding (technical paper), as well as support for various other input encodings, losses, and optimizers. We provide a sample application where an image function (x,y) -> (R,G,B) is learned. The fully fused MLP component of this framework requires a very large amount of shared...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 4
    hosts

    hosts

    Consolidate and extend hosts files from several well-curated sources

    .... Data for extensions are stored in the extensions folder. You manage extensions by curating this folder tree, where you will find the data for fakenews, social, gambling, and porn extension data that we maintain and provide for you. Create an optional blacklist file. The contents of this file (containing a listing of additional domains in hosts file format) are appended to the unified hosts file during the update process. A sample blacklist is included, and may be modified as you need.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 5
    Graph Notebook

    Graph Notebook

    Library extending Jupyter notebooks to integrate with Apache TinkerPop

    The graph notebook provides an easy way to interact with graph databases using Jupyter notebooks. Using this open-source Python package, you can connect to any graph database that supports the Apache TinkerPop, openCypher or the RDF SPARQL graph models. These databases could be running locally on your desktop or in the cloud. Graph databases can be used to explore a variety of use cases including knowledge graphs and identity graphs. This project includes many examples of Jupyter notebooks...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    EKS Best Practices

    EKS Best Practices

    A best practices guide for day 2 operations

    The Amazon EKS Best Practices Guide is a public repository containing comprehensive documentation and guidance for operating production-grade Kubernetes clusters on AWS’s managed service, Amazon EKS. Rather than a code library, it serves as a reference catalogue of patterns, anti-patterns, checklists and architectures across domains such as security, reliability, scalability, networking, cost optimization and hybrid cloud deployments. The repository is maintained by AWS but open to...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Opacus

    Opacus

    Training PyTorch models with differential privacy

    Opacus is a library that enables training PyTorch models with differential privacy. It supports training with minimal code changes required on the client, has little impact on training performance, and allows the client to online track the privacy budget expended at any given moment. Vectorized per-sample gradient computation that is 10x faster than micro batching. Supports most types of PyTorch models and can be used with minimal modification to the original neural network. Open source...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    PixieDust

    PixieDust

    Python Helper library for Jupyter Notebooks

    PixieDust is an open source Python helper library that works as an add-on to Jupyter notebooks to improve the user experience of working with data. It also fills a gap for users who have no access to configuration files when a notebook is hosted on the cloud.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Compare GAN

    Compare GAN

    Compare GAN code

    compare_gan is a research codebase that standardizes how Generative Adversarial Networks are trained and evaluated so results are comparable across papers and datasets. It offers reference implementations for popular GAN architectures and losses, plus a consistent training harness to remove confounding differences in optimization or preprocessing. The library’s evaluation suite includes widely used metrics and diagnostics that quantify sample quality, diversity, and mode coverage...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Keep company data safe with Chrome Enterprise Icon
    Keep company data safe with Chrome Enterprise

    Protect your business with AI policies and data loss prevention in the browser

    Make AI work your way with Chrome Enterprise. Block unapproved sites and set custom data controls that align with your company's policies.
    Download Chrome
  • 10
    pure python polyfit

    pure python polyfit

    python2/3: compute polyfit (1D, 2D, N-D) without thirdparty libraries

    python2/3: compute polyfit (1D, 2D, N-D) without any thirdparty library like numpy, scipy etc. also can be used for least squares solution computation and for A=QR matrix decomposition. Tested with python 2.7 and 3.4 Consider donating to this project: https://sourceforge.net/p/purepythonpolyfit/donation For a Sample use, refer to the WIKI
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    This is a lightweight and fast library for reading and writing any PNM file - PBM, PGM and PPM, up to 16 bits per sample, in ascii/binary format. Library contains also a Python bindings - module pixfiles with PixFile class.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next