Showing 36 open source projects for "ml-so1v"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Automate contact and company data extraction Icon
    Automate contact and company data extraction

    Build lead generation pipelines that pull emails, phone numbers, and company details from directories, maps, social platforms. Full API access.

    Generate leads at scale without building or maintaining scrapers. Use 10,000+ ready-made tools that handle authentication, pagination, and anti-bot protection. Pull data from business directories, social profiles, and public sources, then export to your CRM or database via API. Schedule recurring extractions, enrich existing datasets, and integrate with your workflows.
    Explore Apify Store
  • 1
    applied-ml

    applied-ml

    Papers & tech blogs by companies sharing their work on data science

    The applied-ml repository is a rich, curated collection of papers, technical articles, and case-study blog posts about how machine learning (ML) and data-driven systems are applied in real production environments by major companies. Instead of focusing solely on theoretical ML research, this repo highlights industry-scale challenges: data collection, quality, infrastructure, feature stores, model serving, monitoring, scalability, and how ML is embedded in product workflows. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    TensorFlow.js

    TensorFlow.js

    TensorFlow.js is a library for machine learning in JavaScript

    TensorFlow.js is a library for machine learning in JavaScript. Develop ML models in JavaScript, and use ML directly in the browser or in Node.js. Use off-the-shelf JavaScript models or convert Python TensorFlow models to run in the browser or under Node.js. Retrain pre-existing ML models using your own data. Build and train models directly in JavaScript using flexible and intuitive APIs. Tensors are the core datastructure of TensorFlow.js They are a generalization of vectors and matrices to potentially higher dimensions. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 3
    Flama

    Flama

    Fire up your models with the flame

    Flama is a python library which establishes a standard framework for development and deployment of APIs with special focus on machine learning (ML). The main aim of the framework is to make ridiculously simple the deployment of ML APIs, simplifying (when possible) the entire process to a single line of code. The library builds on Starlette, and provides an easy-to-learn philosophy to speed up the building of highly performant GraphQL, REST and ML APIs. Besides, it comprises an ideal solution for the development of asynchronous and production-ready services, offering automatic deployment for ML models.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    SageMaker Spark

    SageMaker Spark

    A Spark library for Amazon SageMaker

    SageMaker Spark is an open-source Spark library for Amazon SageMaker. With SageMaker Spark you construct Spark ML Pipelines using Amazon SageMaker stages. These pipelines interleave native Spark ML stages and stages that interact with SageMaker training and model hosting. With SageMaker Spark, you can train on Amazon SageMaker from Spark DataFrames using Amazon-provided ML algorithms like K-Means clustering or XGBoost, and make predictions on DataFrames against SageMaker endpoints hosting your trained models, and, if you have your own ML algorithms built into SageMaker compatible Docker containers, you can use SageMaker Spark to train and infer on DataFrames with your own algorithms -- all at Spark scale. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Grafana: The open and composable observability platform Icon
    Grafana: The open and composable observability platform

    Faster answers, predictable costs, and no lock-in built by the team helping to make observability accessible to anyone.

    Grafana is the open source analytics & monitoring solution for every database.
    Learn More
  • 5
    Tribuo

    Tribuo

    Tribuo - A Java machine learning library

    Tribuo* is a machine learning library written in Java. It provides tools for classification, regression, clustering, model development, and more. It provides a unified interface to many popular third-party ML libraries like xgboost and liblinear. With interfaces to native code, Tribuo also makes it possible to deploy models trained by Python libraries (e.g. scikit-learn, and pytorch) in a Java program. Tribuo is licensed under Apache 2.0. Remove the uncertainty around exactly which artifacts you're using in production. Tribuo's Models, Datasets, and Evaluations have provenance, meaning they know exactly what parameters, transformations, and files were used to create them. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Petastorm

    Petastorm

    Petastorm library enables single machine or distributed training

    Petastorm library enables single machine or distributed training and evaluation of deep learning models from datasets in Apache Parquet format. It supports ML frameworks such as Tensorflow, Pytorch, and PySpark and can be used from pure Python code. Petastorm is an open-source data access library developed at Uber ATG. This library enables single machine or distributed training and evaluation of deep learning models directly from datasets in Apache Parquet format. Petastorm supports popular Python-based machine learning (ML) frameworks such as Tensorflow, PyTorch, and PySpark. ...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 7
    CoreNet

    CoreNet

    CoreNet: A library for training deep neural networks

    ...Its distributed runtime manages synchronization, load balancing, and mixed-precision computation to maximize throughput while minimizing communication bottlenecks. CoreNet integrates tightly with Apple’s proprietary ML stack and hardware, serving as the foundation for research in computer vision, language models, and multimodal systems within Apple AI. The framework includes monitoring tools, fault tolerance mechanisms, and efficient checkpointing for massive training runs.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    NanoNeuron

    NanoNeuron

    NanoNeuron is 7 simple JavaScript functions

    Nano-Neuron is a didactic project that reduces the idea of a neuron to a handful of tiny JavaScript functions so learners can see “learning” in action without heavy frameworks. It demonstrates how a scalar input can be linearly transformed with a weight and bias, then adjusted via gradient updates to fit a simple mapping such as Celsius-to-Fahrenheit conversion. The code emphasizes readability over performance, inviting you to step through calculations and watch parameters converge. Because...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    TensorStore

    TensorStore

    Library for reading and writing large multi-dimensional arrays

    ...Rich indexing, slicing, and broadcasting operations make it feel like a familiar array API, while asynchronous I/O pipelines stream chunks efficiently in parallel. Transactional semantics allow atomic updates and consistent snapshots, which is essential for large, shared datasets used by ML and scientific workflows. The library is engineered for scalability—background caching, chunk sharding, and retryable operations keep throughput high even over unreliable networks. With language bindings, it fits into Python-heavy analysis pipelines while retaining a fast C++ core.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Smart Business Texting that Generates Pipeline Icon
    Smart Business Texting that Generates Pipeline

    Create and convert pipeline at scale through industry leading SMS campaigns, automation, and conversation management.

    TextUs is the leading text messaging service provider for businesses that want to engage in real-time conversations with customers, leads, employees and candidates. Text messaging is one of the most engaging ways to communicate with customers, candidates, employees and leads. 1:1, two-way messaging encourages response and engagement. Text messages help teams get 10x the response rate over phone and email. Business text messaging has become a more viable form of communication than traditional mediums. The TextUs user experience is intentionally designed to resemble the familiar SMS inbox, allowing users to easily manage contacts, conversations, and campaigns. Work right from your desktop with the TextUs web app or use the Chrome extension alongside your ATS or CRM. Leverage the mobile app for on-the-go sending and responding.
    Learn More
  • 10
    Union Pandera

    Union Pandera

    Light-weight, flexible, expressive statistical data testing library

    The open-source framework for precision data testing for data scientists and ML engineers. Pandera provides a simple, flexible, and extensible data-testing framework for validating not only your data but also the functions that produce them. A simple, zero-configuration data testing framework for data scientists and ML engineers seeking correctness. Access a comprehensive suite of built-in tests, or easily create your own validation rules for your specific use cases.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Opacus

    Opacus

    Training PyTorch models with differential privacy

    ...Supports most types of PyTorch models and can be used with minimal modification to the original neural network. Open source, modular API for differential privacy research. Everyone is welcome to contribute. ML practitioners will find this to be a gentle introduction to training a model with differential privacy as it requires minimal code changes. Differential Privacy researchers will find this easy to experiment and tinker with, allowing them to focus on what matters.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Netron

    Netron

    Visualizer for neural network, deep learning, machine learning models

    Netron is a viewer for neural network, deep learning and machine learning models. Netron supports ONNX, Keras, TensorFlow Lite, Caffe, Darknet, Core ML, MNN, MXNet, ncnn, PaddlePaddle, Caffe2, Barracuda, Tengine, TNN, RKNN, MindSpore Lite, and UFF. Netron has experimental support for TensorFlow, PyTorch, TorchScript, OpenVINO, Torch, Arm NN, BigDL, Chainer, CNTK, Deeplearning4j, MediaPipe, ML.NET, scikit-learn, TensorFlow.js. There is an extense variety of sample model files to download or open using the browser version. ...
    Downloads: 52 This Week
    Last Update:
    See Project
  • 13
    Groq Python

    Groq Python

    The official Python Library for the Groq API

    ...This makes it easy to integrate Groq-powered AI capabilities into backend services, data pipelines, research notebooks, or applications written in Python. For those building AI-based tooling, automation scripts, or ML-backed backends, groq-python abstracts away HTTP request plumbing and exposes a clean API, accelerating development and reducing boilerplate.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Computer Science courses video lectures

    Computer Science courses video lectures

    List of Computer Science courses with video lectures

    This repository is a curated list of full-length computer science video lecture series across many universities and MOOC platforms, helping learners assemble their own curriculum. The list spans foundational topics like algorithms, data structures, operating systems, computer networks, machine learning, and more, all delivered via lectures rather than just textual tutorials. The contributor guidelines encourage adding high-quality courses (not just casual tutorials) so the list remains...
    Downloads: 6 This Week
    Last Update:
    See Project
  • 15
    core.match

    core.match

    An optimized pattern matching library for Clojure

    core.match is a high-performance pattern-matching library for Clojure and ClojureScript. It provides an optimized macro-based DSL for structurally matching data—such as sequences, maps, regexes—offering a clearer alternative to nested conditionals or destructuring. A symbol pattern can represent one of three behaviours. Match the value of an existing local binding. Create a "named" wildcard pattern that creates a binding of the given name to the right of the pattern row.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Earth Engine API

    Earth Engine API

    Python and JavaScript bindings for calling the Earth Engine API

    The Earth Engine API provides Python and JavaScript client libraries for Google Earth Engine, a planetary-scale geospatial analysis platform. With it, users compose lazy, server-side computations over massive catalogs of satellite imagery and vector datasets without handling raw files locally. The API exposes functional operators for map algebra, reducers, joins, and machine learning that scale transparently on Earth Engine’s backend. Developers authenticate once, work interactively in...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 17
    XNNPACK

    XNNPACK

    High-efficiency floating-point neural network inference operators

    XNNPACK is a highly optimized, low-level neural network inference library developed by Google for accelerating deep learning workloads across a variety of hardware architectures, including ARM, x86, WebAssembly, and RISC-V. Rather than serving as a standalone ML framework, XNNPACK provides high-performance computational primitives—such as convolutions, pooling, activation functions, and arithmetic operations—that are integrated into higher-level frameworks like TensorFlow Lite, PyTorch Mobile, ONNX Runtime, TensorFlow.js, and MediaPipe. The library is written in C/C++ and designed for maximum portability, efficiency, and performance, leveraging platform-specific instruction sets (e.g., NEON, AVX, SIMD) for optimized execution. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 18
    EKS Best Practices

    EKS Best Practices

    A best practices guide for day 2 operations

    The Amazon EKS Best Practices Guide is a public repository containing comprehensive documentation and guidance for operating production-grade Kubernetes clusters on AWS’s managed service, Amazon EKS. Rather than a code library, it serves as a reference catalogue of patterns, anti-patterns, checklists and architectures across domains such as security, reliability, scalability, networking, cost optimization and hybrid cloud deployments. The repository is maintained by AWS but open to...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    libfabric

    libfabric

    AWS Libfabric

    ...Its custom-built operating system (OS) bypass hardware interface enhances the performance of inter-instance communications, which is critical to scaling these applications. With EFA, High Performance Computing (HPC) applications using the Message Passing Interface (MPI) and Machine Learning (ML) applications using NVIDIA Collective Communications Library (NCCL) can scale to thousands of CPUs or GPUs. As a result, you get the application performance of on-premises HPC clusters with the on-demand elasticity and flexibility of the AWS cloud.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Open LLMs

    Open LLMs

    A list of open LLMs available for commercial use

    Open LLMs, by the same author behind applied-ml — serves as a curated directory of open large language models (LLMs) that are available for commercial or open-source use. Rather than proprietary or closed-source LLMs, this repo focuses on freely available or permissively licensed models that practitioners can download, run, fine-tune or integrate without restrictive licensing. For teams or developers interested in experimenting with LLMs but wanting to avoid vendor lock-in or licensing constraints, open-llms offers a practical starting point. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Python-Spider

    Python-Spider

    Python3 web crawler practice

    Python-Spider is a repository intended to teach or provide examples for writing web spiders / crawlers in Python — part of a broader learning and resource collection by its author. The code and documentation are oriented toward beginners or intermediate learners who want to learn how to fetch, parse, and extract data from websites programmatically. As part of the author’s public learning-path repositories, python-spider likely includes examples of HTTP requests, HTML parsing, maybe...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Homemade Machine Learning

    Homemade Machine Learning

    Python examples of popular machine learning algorithms

    homemade-machine-learning is a repository by Oleksii Trekhleb containing Python implementations of classic machine-learning algorithms done “from scratch”, meaning you don’t rely heavily on high-level libraries but instead write the logic yourself to deepen understanding. Each algorithm is accompanied by mathematical explanations, visualizations (often via Jupyter notebooks), and interactive demos so you can tweak parameters, data, and observe outcomes in real time. The purpose is...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    DGL

    DGL

    Python package built to ease deep learning on graph

    Build your models with PyTorch, TensorFlow or Apache MXNet. Fast and memory-efficient message passing primitives for training Graph Neural Networks. Scale to giant graphs via multi-GPU acceleration and distributed training infrastructure. DGL empowers a variety of domain-specific projects including DGL-KE for learning large-scale knowledge graph embeddings, DGL-LifeSci for bioinformatics and cheminformatics, and many others. We are keen to bringing graphs closer to deep learning researchers....
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Deequ

    Deequ

    Deequ is a library built on top of Apache Spark

    ...It also includes a little domain-specific language called DQDL (Data Quality Definition Language) which allows declarative specification of quality rules. Users typically run Deequ before feeding data downstream (to ML pipelines, analytics, or production systems), enabling early detection and isolation of data errors. There is also a Python wrapper, PyDeequ, for users who prefer working from Python environments.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Darts

    Darts

    A python library for easy manipulation and forecasting of time series

    ...The library also makes it easy to backtest models, combine the predictions of several models, and take external data into account. Darts supports both univariate and multivariate time series and models. The ML-based models can be trained on potentially large datasets containing multiple time series, and some of the models offer a rich support for probabilistic forecasting. We recommend to first setup a clean Python environment for your project with at least Python 3.7 using your favorite tool (conda, venv, virtualenv with or without virtualenvwrapper).
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • Next