Showing 6 open source projects for "python source"

View related business solutions
  • $300 in Free Credit for Your Google Cloud Projects Icon
    $300 in Free Credit for Your Google Cloud Projects

    Build, test, and explore on Google Cloud with $300 in free credit. No hidden charges. No surprise bills.

    Launch your next project with $300 in free Google Cloud credit—no hidden charges. Test, build, and deploy without risk. Use your credit across the Google Cloud platform to find what works best for your needs. After your credits are used, continue building with free monthly usage products. Only pay when you're ready to scale. Sign up in minutes and start exploring.
    Start Free Trial
  • 99.99% Uptime for MySQL and PostgreSQL on Google Cloud Icon
    99.99% Uptime for MySQL and PostgreSQL on Google Cloud

    Enterprise Plus edition delivers sub-second maintenance downtime and 2x read/write performance. Built for critical apps.

    Cloud SQL Enterprise Plus gives you a 99.99% availability SLA with near-zero downtime maintenance—typically under 10 seconds. Get 2x better read/write performance, intelligent data caching, and 35 days of point-in-time recovery. Supports MySQL, PostgreSQL, and SQL Server with built-in vector search for gen AI apps. New customers get $300 in free credit.
    Try Cloud SQL Free
  • 1
    Deequ

    Deequ

    Deequ is a library built on top of Apache Spark

    Deequ is a library built atop Apache Spark that enables defining “unit tests for data” — that is, formal constraints or checks on datasets to ensure data quality along dimensions such as completeness, uniqueness, value ranges, correlations, etc. It can scale to large datasets (billions of rows) by translating those data checks into Spark jobs. Deequ supports advanced features like a metrics repository for storing computed statistics over time, anomaly detection of data quality metrics, and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Synapse Machine Learning

    Synapse Machine Learning

    Simple and distributed Machine Learning

    SynapseML (previously MMLSpark) is an open source library to simplify the creation of scalable machine learning pipelines. SynapseML builds on Apache Spark and SparkML to enable new kinds of machine learning, analytics, and model deployment workflows. SynapseML adds many deep learning and data science tools to the Spark ecosystem, including seamless integration of Spark Machine Learning pipelines with the Open Neural Network Exchange (ONNX), LightGBM, The Cognitive Services, Vowpal Wabbit,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    osm4scala

    osm4scala

    Reading OpenStreetMap Pbf files.

    Scala and polyglot Spark library (Scala, PySpark, SparkSQL, ... ) focused on reading OpenStreetMap Pbf files.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Assorted projects. General-purpose libraries for Python, C++, Scala, bash, and others. Meta-programming tools. System utilities. UI components. Web APIs. Configuration files. Benchmarks. Programming competition entries. And much more.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Build AI Apps with Gemini 3 on Vertex AI Icon
    Build AI Apps with Gemini 3 on Vertex AI

    Access Google’s most capable multimodal models. Train, test, and deploy AI with 200+ foundation models on one platform.

    Vertex AI gives developers access to Gemini 3—Google’s most advanced reasoning and coding model—plus 200+ foundation models including Claude, Llama, and Gemma. Build generative AI apps with Vertex AI Studio, customize with fine-tuning, and deploy to production with enterprise-grade MLOps. New customers get $300 in free credits.
    Try Vertex AI Free
  • 5
    node2vec

    node2vec

    Learn continuous vector embeddings for nodes in a graph using biased R

    The node2vec project provides an implementation of the node2vec algorithm, a scalable feature learning method for networks. The algorithm is designed to learn continuous vector representations of nodes in a graph by simulating biased random walks and applying skip-gram models from natural language processing. These embeddings capture community structure as well as structural equivalence, enabling machine learning on graphs for tasks such as classification, clustering, and link prediction....
    Downloads: 1 This Week
    Last Update:
    See Project
  • 6

    Waterloo

    Java-based scientific graphics

    Java-based scientific graphics with support for Java, Groovy, MATLAB, Python, the R statistical environment, Scala and SciLab.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next
MongoDB Logo MongoDB
Gen AI apps are built with MongoDB Atlas
Atlas offers built-in vector search and global availability across 125+ regions. Start building AI apps faster, all in one place.
Try Free →