Showing 18 open source projects for "vision"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Outgrown Windows Task Scheduler? Icon
    Outgrown Windows Task Scheduler?

    Free diagnostic identifies where your workflow is breaking down—with instant analysis of your scheduling environment.

    Windows Task Scheduler wasn't built for complex, cross-platform automation. Get a free diagnostic that shows exactly where things are failing and provides remediation recommendations. Interactive HTML report delivered in minutes.
    Download Free Tool
  • 1
    Kornia

    Kornia

    Open Source Differentiable Computer Vision Library

    ...With Kornia we fill the gap between classical and deep computer vision that implements standard and advanced vision algorithms for AI. Our libraries and initiatives are always according to the community needs.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Albumentations

    Albumentations

    Fast image augmentation library and an easy-to-use wrapper

    Albumentations is a computer vision tool that boosts the performance of deep convolutional neural networks. Albumentations is a Python library for fast and flexible image augmentations. Albumentations efficiently implements a rich variety of image transform operations that are optimized for performance, and does so while providing a concise, yet powerful image augmentation interface for different computer vision tasks, including object classification, segmentation, and detection. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Flax

    Flax

    Flax is a neural network library for JAX

    ...Flax emphasizes composability: optimizers, training loops, and checkpointing are provided as examples or utilities rather than monolithic frameworks, encouraging research-friendly customization. The library is widely used in vision, language, and reinforcement learning, often serving as a thin layer atop NumPy-like JAX primitives. Tutorials and examples show patterns for multi-host training, mixed precision, and advanced input pipelines that scale from laptops to TPUs.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 4
    MuJoCo Playground

    MuJoCo Playground

    An open source library for GPU-accelerated robot learning

    ...The project includes classic control benchmarks from dm_control, advanced quadruped and bipedal locomotion systems, and dexterous as well as non-prehensile manipulation setups. It also offers optional vision-based training capabilities through integration with Madrona-MJX, allowing researchers to train policies directly from image input on GPUs. MuJoCo Playground supports both the MJX JAX implementation and the Warp physics engine, enabling flexible use across research pipelines. The environments are designed for fast training, compatibility with reinforcement learning libraries, and real-time trajectory visualization using rscope.
    Downloads: 0 This Week
    Last Update:
    See Project
  • AI-generated apps that pass security review Icon
    AI-generated apps that pass security review

    Stop waiting on engineering. Build production-ready internal tools with AI—on your company data, in your cloud.

    Retool lets you generate dashboards, admin panels, and workflows directly on your data. Type something like “Build me a revenue dashboard on my Stripe data” and get a working app with security, permissions, and compliance built in from day one. Whether on our cloud or self-hosted, create the internal software your team needs without compromising enterprise standards or control.
    Try Retool free
  • 5
    CO3D (Common Objects in 3D)

    CO3D (Common Objects in 3D)

    Tooling for the Common Objects In 3D dataset

    CO3Dv2 (Common Objects in 3D, version 2) is a large-scale 3D computer vision dataset and toolkit from Facebook Research designed for training and evaluating category-level 3D reconstruction methods using real-world data. It builds upon the original CO3Dv1 dataset, expanding both scale and quality—featuring 2× more sequences and 4× more frames, with improved image fidelity, more accurate segmentation masks, and enhanced annotations for object-centric 3D reconstruction.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 6
    UCO3D

    UCO3D

    Uncommon Objects in 3D dataset

    uCO3D is a large-scale 3D vision dataset and toolkit centered on turn-table videos of everyday objects drawn from the LVIS taxonomy. It provides about 170,000 full videos per object instance rather than still frames, along with per-video annotations including object masks, calibrated camera poses, and multiple flavors of point clouds. Each sequence also ships with a precomputed 3D Gaussian Splat reconstruction, enabling fast, differentiable rendering workflows and modern implicit/point-based modeling experiments. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 7
    CoreNet

    CoreNet

    CoreNet: A library for training deep neural networks

    ...Its distributed runtime manages synchronization, load balancing, and mixed-precision computation to maximize throughput while minimizing communication bottlenecks. CoreNet integrates tightly with Apple’s proprietary ML stack and hardware, serving as the foundation for research in computer vision, language models, and multimodal systems within Apple AI. The framework includes monitoring tools, fault tolerance mechanisms, and efficient checkpointing for massive training runs.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Multimodal

    Multimodal

    TorchMultimodal is a PyTorch library

    This project, also known as TorchMultimodal, is a PyTorch library for building, training, and experimenting with multimodal, multi-task models at scale. The library provides modular building blocks such as encoders, fusion modules, loss functions, and transformations that support combining modalities (vision, text, audio, etc.) in unified architectures. It includes a collection of ready model classes—like ALBEF, CLIP, BLIP-2, COCA, FLAVA, MDETR, and Omnivore—that serve as reference implementations you can adopt or adapt. The design emphasizes composability: you can mix and match encoder, fusion, and decoder components rather than starting from monolithic models. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Theseus

    Theseus

    A library for differentiable nonlinear optimization

    Theseus is a library for differentiable nonlinear optimization that lets you embed solvers like Gauss-Newton or Levenberg–Marquardt inside PyTorch models. Problems are expressed as factor graphs with variables on manifolds (e.g., SE(3), SO(3)), so classical robotics and vision tasks—bundle adjustment, pose graph optimization, hand–eye calibration—can be written succinctly and solved efficiently. Because solves are differentiable, you can backpropagate through optimization to learn cost weights, feature extractors, or initialization networks end-to-end. The implementation supports batched optimization on GPU, robust losses, damping strategies, and custom factors, making it practical for real-time systems. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • 10
    fvcore

    fvcore

    Collection of common code shared among different research projects

    fvcore is a lightweight utility library that factors out common performance-minded components used across Facebook/Meta computer-vision codebases. It provides numerics and loss layers (e.g., focal loss, smooth-L1, IoU/GIoU) implemented for speed and clarity, along with initialization helpers and normalization layers for building PyTorch models. Its common modules include timers, logging, checkpoints, registry patterns, and configuration helpers that reduce boilerplate in research code. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    iJEPA

    iJEPA

    Official codebase for I-JEPA

    ...This objective sidesteps generative pixel losses and avoids heavy negative sampling, producing features that transfer strongly with linear probes and minimal fine-tuning. The design scales naturally with Vision Transformer backbones and flexible masking strategies, and it trains stably at large batch sizes. i-JEPA’s predictions are made in embedding space, which is computationally efficient and better aligned with downstream discrimination tasks. The repository provides training recipes, data pipelines, and evaluation code that clarify which masking patterns and architectural choices matter most.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 12
    DeepMind Research

    DeepMind Research

    Implementations and code to accompany DeepMind publications

    This repository collects reference implementations and illustrative code accompanying a wide range of DeepMind publications, making it easier for the research community to reproduce results, inspect algorithms, and build on prior work. The top level organizes many paper-specific directories across domains such as deep reinforcement learning, self-supervised vision, generative modeling, scientific ML, and program synthesis—for example BYOL, Perceiver/Perceiver IO, Enformer for genomics, MeshGraphNets for physics, RL Unplugged, Nowcasting for weather, and more. Each project folder typically includes its own README, scripts, and notebooks so you can run experiments or explore models in isolation, and many link to associated datasets or external environments like DeepMind Lab and StarCraft II. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Nerfies

    Nerfies

    This is the code for Deformable Neural Radiance Fields

    ...A set of utilities manages dataset preparation, pose estimation, and checkpoints so researchers can reproduce results on their own footage. The work sits at the intersection of graphics and vision, showing how learned volumetric rendering can handle human motion without dense markers or studio rigs.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    CNN for Image Retrieval
    ...It focuses on applying deep learning techniques to improve upon traditional handcrafted descriptors by learning features directly from data. The code includes training and evaluation scripts that can be adapted for custom datasets, making it useful for experimenting with retrieval systems in computer vision. By leveraging CNN architectures, the project showcases how learned embeddings can capture semantic similarity across varied images. This resource serves as both an educational reference and a foundation for further exploration in image retrieval research.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 15
    Top Deep Learning Projects

    Top Deep Learning Projects

    A list of popular github projects related to deep learning

    ...Rather than being a library itself, it serves as a curated roadmap and reference guide for anyone exploring the deep learning ecosystem — from beginners to experienced practitioners. By aggregating high-star projects across frameworks (TensorFlow, PyTorch), tools (computer vision, NLP, reinforcement learning), tutorials, and research code, it helps users quickly discover reputable and well-maintained repositories. This way one can survey state-of-the-art projects, find learning resources, or pick stable libraries for production — without manually sifting through hundreds of repos. The repository is openly licensed under MIT, making it easy to fork, extend, or contribute updates (e.g. adding newer projects or reordering by recent popularity).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    DeepLearning

    DeepLearning

    Deep Learning (Flower Book) mathematical derivation

    ...At the same time, it also introduces deep learning techniques used by practitioners in the industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling and practical methods, and investigates topics such as natural language processing, Applications in speech recognition, computer vision, online recommender systems, bioinformatics, and video games. Finally, the Deep Learning book provides research directions covering theoretical topics including linear factor models, autoencoders, representation learning, structured probabilistic models, etc.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 17
    SFD

    SFD

    S³FD: Single Shot Scale-invariant Face Detector, ICCV, 2017

    ...It includes training scripts, evaluation code, and pre-trained models that achieve strong results on popular benchmarks such as AFW, PASCAL Face, FDDB, and WIDER FACE. The framework is optimized for speed and accuracy, making it suitable for both academic research and practical applications in computer vision.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 18

    ProximityForest

    Efficient Approximate Nearest Neighbors for General Metric Spaces

    ...One application of a ProximityForest is given in the following CVPR publication: Stephen O'Hara and Bruce A. Draper, "Scalable Action Recognition with a Subspace Forest," IEEE Conference on Computer Vision and Pattern Recognition, 2012. This source code is provided without warranty and is available under the GPL license. More commercially-friendly licenses may be available. Please contact Stephen O'Hara for license options. Please view the wiki on this site for installation instructions and examples on reproducing the results of the papers.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next