Showing 18 open source projects for "ml-so1v"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Cloud tools for web scraping and data extraction Icon
    Cloud tools for web scraping and data extraction

    Deploy pre-built tools that crawl websites, extract structured data, and feed your applications. Reliable web data without maintaining scrapers.

    Automate web data collection with cloud tools that handle anti-bot measures, browser rendering, and data transformation out of the box. Extract content from any website, push to vector databases for RAG workflows, or pipe directly into your apps via API. Schedule runs, set up webhooks, and connect to your existing stack. Free tier available, then scale as you need to.
    Explore 10,000+ tools
  • 1
    Flama

    Flama

    Fire up your models with the flame

    Flama is a python library which establishes a standard framework for development and deployment of APIs with special focus on machine learning (ML). The main aim of the framework is to make ridiculously simple the deployment of ML APIs, simplifying (when possible) the entire process to a single line of code. The library builds on Starlette, and provides an easy-to-learn philosophy to speed up the building of highly performant GraphQL, REST and ML APIs. Besides, it comprises an ideal solution for the development of asynchronous and production-ready services, offering automatic deployment for ML models.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Petastorm

    Petastorm

    Petastorm library enables single machine or distributed training

    Petastorm library enables single machine or distributed training and evaluation of deep learning models from datasets in Apache Parquet format. It supports ML frameworks such as Tensorflow, Pytorch, and PySpark and can be used from pure Python code. Petastorm is an open-source data access library developed at Uber ATG. This library enables single machine or distributed training and evaluation of deep learning models directly from datasets in Apache Parquet format. Petastorm supports popular Python-based machine learning (ML) frameworks such as Tensorflow, PyTorch, and PySpark. ...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 3
    CoreNet

    CoreNet

    CoreNet: A library for training deep neural networks

    ...Its distributed runtime manages synchronization, load balancing, and mixed-precision computation to maximize throughput while minimizing communication bottlenecks. CoreNet integrates tightly with Apple’s proprietary ML stack and hardware, serving as the foundation for research in computer vision, language models, and multimodal systems within Apple AI. The framework includes monitoring tools, fault tolerance mechanisms, and efficient checkpointing for massive training runs.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Union Pandera

    Union Pandera

    Light-weight, flexible, expressive statistical data testing library

    The open-source framework for precision data testing for data scientists and ML engineers. Pandera provides a simple, flexible, and extensible data-testing framework for validating not only your data but also the functions that produce them. A simple, zero-configuration data testing framework for data scientists and ML engineers seeking correctness. Access a comprehensive suite of built-in tests, or easily create your own validation rules for your specific use cases.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • 5
    Opacus

    Opacus

    Training PyTorch models with differential privacy

    ...Supports most types of PyTorch models and can be used with minimal modification to the original neural network. Open source, modular API for differential privacy research. Everyone is welcome to contribute. ML practitioners will find this to be a gentle introduction to training a model with differential privacy as it requires minimal code changes. Differential Privacy researchers will find this easy to experiment and tinker with, allowing them to focus on what matters.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Groq Python

    Groq Python

    The official Python Library for the Groq API

    ...This makes it easy to integrate Groq-powered AI capabilities into backend services, data pipelines, research notebooks, or applications written in Python. For those building AI-based tooling, automation scripts, or ML-backed backends, groq-python abstracts away HTTP request plumbing and exposes a clean API, accelerating development and reducing boilerplate.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    EKS Best Practices

    EKS Best Practices

    A best practices guide for day 2 operations

    The Amazon EKS Best Practices Guide is a public repository containing comprehensive documentation and guidance for operating production-grade Kubernetes clusters on AWS’s managed service, Amazon EKS. Rather than a code library, it serves as a reference catalogue of patterns, anti-patterns, checklists and architectures across domains such as security, reliability, scalability, networking, cost optimization and hybrid cloud deployments. The repository is maintained by AWS but open to...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Python-Spider

    Python-Spider

    Python3 web crawler practice

    Python-Spider is a repository intended to teach or provide examples for writing web spiders / crawlers in Python — part of a broader learning and resource collection by its author. The code and documentation are oriented toward beginners or intermediate learners who want to learn how to fetch, parse, and extract data from websites programmatically. As part of the author’s public learning-path repositories, python-spider likely includes examples of HTTP requests, HTML parsing, maybe...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Homemade Machine Learning

    Homemade Machine Learning

    Python examples of popular machine learning algorithms

    homemade-machine-learning is a repository by Oleksii Trekhleb containing Python implementations of classic machine-learning algorithms done “from scratch”, meaning you don’t rely heavily on high-level libraries but instead write the logic yourself to deepen understanding. Each algorithm is accompanied by mathematical explanations, visualizations (often via Jupyter notebooks), and interactive demos so you can tweak parameters, data, and observe outcomes in real time. The purpose is...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Grafana: The open and composable observability platform Icon
    Grafana: The open and composable observability platform

    Faster answers, predictable costs, and no lock-in built by the team helping to make observability accessible to anyone.

    Grafana is the open source analytics & monitoring solution for every database.
    Learn More
  • 10
    DGL

    DGL

    Python package built to ease deep learning on graph

    Build your models with PyTorch, TensorFlow or Apache MXNet. Fast and memory-efficient message passing primitives for training Graph Neural Networks. Scale to giant graphs via multi-GPU acceleration and distributed training infrastructure. DGL empowers a variety of domain-specific projects including DGL-KE for learning large-scale knowledge graph embeddings, DGL-LifeSci for bioinformatics and cheminformatics, and many others. We are keen to bringing graphs closer to deep learning researchers....
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Darts

    Darts

    A python library for easy manipulation and forecasting of time series

    ...The library also makes it easy to backtest models, combine the predictions of several models, and take external data into account. Darts supports both univariate and multivariate time series and models. The ML-based models can be trained on potentially large datasets containing multiple time series, and some of the models offer a rich support for probabilistic forecasting. We recommend to first setup a clean Python environment for your project with at least Python 3.7 using your favorite tool (conda, venv, virtualenv with or without virtualenvwrapper).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    MMDeploy

    MMDeploy

    OpenMMLab Model Deployment Framework

    ...All kinds of modules in the SDK can be extended, such as Transform for image processing, Net for Neural Network inference, Module for postprocessing and so on. Install and build your target backend. ONNX Runtime is a cross-platform inference and training accelerator compatible with many popular ML/DNN frameworks. Please read getting_started for the basic usage of MMDeploy.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 13
    fastMRI

    fastMRI

    A large open dataset + tools to speed up MRI scans using ML

    fastMRI is a large-scale collaborative research project by Facebook AI Research (FAIR) and NYU Langone Health that explores how deep learning can accelerate magnetic resonance imaging (MRI) acquisition without compromising image quality. By enabling reconstruction of high-fidelity MR images from significantly fewer measurements, fastMRI aims to make MRI scanning faster, cheaper, and more accessible in clinical settings. The repository provides an open-source PyTorch framework with data...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 14
    DeepMind Research

    DeepMind Research

    Implementations and code to accompany DeepMind publications

    This repository collects reference implementations and illustrative code accompanying a wide range of DeepMind publications, making it easier for the research community to reproduce results, inspect algorithms, and build on prior work. The top level organizes many paper-specific directories across domains such as deep reinforcement learning, self-supervised vision, generative modeling, scientific ML, and program synthesis—for example BYOL, Perceiver/Perceiver IO, Enformer for genomics, MeshGraphNets for physics, RL Unplugged, Nowcasting for weather, and more. Each project folder typically includes its own README, scripts, and notebooks so you can run experiments or explore models in isolation, and many link to associated datasets or external environments like DeepMind Lab and StarCraft II. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 15
    CommandlineConfig

    CommandlineConfig

    A library for users to write configurations in Python

    ...One of its core strengths is the ability to override configuration values directly from the command line, making it convenient to run many experimental variants without editing files repeatedly. The library supports arbitrarily deep nested structures, type handling, enumerated value constraints, and even tuple types, which are common in ML experiment setups. It also includes features for automatic version checking and convenient help output, so users can quickly see available parameters and their descriptions via a -h flag.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Tensor2Tensor

    Tensor2Tensor

    Library of deep learning models and datasets

    ...However, most of these DL systems use unique setups that require significant engineering effort and may only work for a specific problem or architecture, making it hard to run new experiments and compare the results. Tensor2Tensor, or T2T for short, is a library of deep learning models and datasets designed to make deep learning more accessible and accelerate ML research. T2T was developed by researchers and engineers in the Google Brain team and a community of users. It is now deprecated, we keep it running and welcome bug-fixes, but encourage users to use the successor library Trax.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    data-science-ipython-notebooks

    data-science-ipython-notebooks

    Data science Python notebooks: Deep learning

    Data Science IPython Notebooks is a broad, curated set of Jupyter notebooks covering Python, data wrangling, visualization, machine learning, deep learning, and big data tools. It aims to be a practical map of the ecosystem, showing hands-on examples with libraries such as NumPy, pandas, matplotlib, scikit-learn, and others. Many notebooks introduce concepts step by step, then apply them to real datasets so readers can see techniques in action. Advanced sections touch on neural networks and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Zhao

    Zhao

    A compilation of "The Princely Party Relationship Network"

    zhao is a repository that consolidates research, data, and insights related to Zhao, which is likely an individual’s research collection, notes, or curated resources on deep learning, AI, or computational topics (name and content context suggest specialized study). The project may include code examples, experiment results, references to academic papers, mathematical notes, and supporting scripts to explore specific ML methods, benchmarks, or theoretical findings. Because it aggregates content associated with Zhao, the repository functions as a personal or shared knowledge base for readers who want insight into a body of research rather than a traditional software library. Depending on the specific subfolders, it could offer implementations of algorithms, dataset processing utilities, or notebooks that illustrate concepts. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next