Showing 8 open source projects for "image pattern recognition"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Cloud-based help desk software with ServoDesk Icon
    Cloud-based help desk software with ServoDesk

    Full access to Enterprise features. No credit card required.

    What if You Could Automate 90% of Your Repetitive Tasks in Under 30 Days? At ServoDesk, we help businesses like yours automate operations with AI, allowing you to cut service times in half and increase productivity by 25% - without hiring more staff.
    Try ServoDesk for free
  • 1
    Stanza

    Stanza

    Stanford NLP Python library for many human languages

    Stanza is a collection of accurate and efficient tools for the linguistic analysis of many human languages. Starting from raw text to syntactic analysis and entity recognition, Stanza brings state-of-the-art NLP models to languages of your choosing. Stanza is a Python natural language analysis package. It contains tools, which can be used in a pipeline, to convert a string containing human language text into lists of sentences and words, to generate base forms of those words, their parts of...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 2
    Face Alignment

    Face Alignment

    2D and 3D Face alignment library build using pytorch

    Detect facial landmarks from Python using the world's most accurate face alignment network, capable of detecting points in both 2D and 3D coordinates. Build using FAN's state-of-the-art deep learning-based face alignment method. For numerical evaluations, it is highly recommended to use the lua version which uses identical models with the ones evaluated in the paper. More models will be added soon. By default, the package will use the SFD face detector. However, the users can alternatively...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 3
    Differentiable Neural Computer

    Differentiable Neural Computer

    A TensorFlow implementation of the Differentiable Neural Computer

    The Differentiable Neural Computer (DNC), developed by Google DeepMind, is a neural network architecture augmented with dynamic external memory, enabling it to learn algorithms and solve complex reasoning tasks. Published in Nature in 2016 under the paper “Hybrid computing using a neural network with dynamic external memory,” the DNC combines the pattern recognition power of neural networks with a memory module that can be written to and read from in a differentiable way. This allows the model to learn how to store and retrieve information across long time horizons, much like a traditional computer. The architecture consists of modular components including an access module for managing memory operations, a controller (often an LSTM or feedforward network) for issuing read/write commands, and submodules for temporal linkage and memory allocation tracking.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 4
    Tensor2Tensor

    Tensor2Tensor

    Library of deep learning models and datasets

    Deep Learning (DL) has enabled the rapid advancement of many useful technologies, such as machine translation, speech recognition and object detection. In the research community, one can find code open-sourced by the authors to help in replicating their results and further advancing deep learning. However, most of these DL systems use unique setups that require significant engineering effort and may only work for a specific problem or architecture, making it hard to run new experiments and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Skillfully - The future of skills based hiring Icon
    Skillfully - The future of skills based hiring

    Realistic Workplace Simulations that Show Applicant Skills in Action

    Skillfully transforms hiring through AI-powered skill simulations that show you how candidates actually perform before you hire them. Our platform helps companies cut through AI-generated resumes and rehearsed interviews by validating real capabilities in action. Through dynamic job specific simulations and skill-based assessments, companies like Bloomberg and McKinsey have cut screening time by 50% while dramatically improving hire quality.
    Learn More
  • 5
    GoodByeCatpcha

    GoodByeCatpcha

    Solver ReCaptcha v2 Free

    An async Python library to automate solving ReCAPTCHA v2 by images/audio using Mozilla's DeepSpeech, PocketSphinx, Microsoft Azure’s, Google Speech and Amazon's Transcribe Speech-to-Text API. Also image recognition to detect the object suggested in the captcha. Built with Pyppeteer for Chrome automation framework and similarities to Puppeteer, PyDub for easily converting MP3 files into WAV, aiohttp for async minimalistic web-server, and Python’s built-in AsyncIO for convenience.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6

    Face Recognition

    World's simplest facial recognition api for Python & the command line

    Face Recognition is the world's simplest face recognition library. It allows you to recognize and manipulate faces from Python or from the command line using dlib's (a C++ toolkit containing machine learning algorithms and tools) state-of-the-art face recognition built with deep learning. Face Recognition is highly accurate and is able to do a number of things. It can find faces in pictures, manipulate facial features in pictures, identify faces in pictures, and do face recognition on a...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 7
    Neural Libs

    Neural Libs

    Neural network library for developers

    This project includes the implementation of a neural network MLP, RBF, SOM and Hopfield networks in several popular programming languages. The project also includes examples of the use of neural networks as function approximation and time series prediction. Includes a special program makes it easy to test neural network based on training data and the optimization of the network.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 8

    ProximityForest

    Efficient Approximate Nearest Neighbors for General Metric Spaces

    ..., WACV 2013 (best student paper award). One application of a ProximityForest is given in the following CVPR publication: Stephen O'Hara and Bruce A. Draper, "Scalable Action Recognition with a Subspace Forest," IEEE Conference on Computer Vision and Pattern Recognition, 2012. This source code is provided without warranty and is available under the GPL license. More commercially-friendly licenses may be available. Please contact Stephen O'Hara for license options. Please view the wiki on this site for installation instructions and examples on reproducing the results of the papers.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next