Nevergrad
A Python toolbox for performing gradient-free optimization
Nevergrad is a Python library for derivative-free optimization, offering robust implementations of many algorithms suited for black-box functions (i.e. functions where gradients are unavailable or unreliable). It targets hyperparameter search, architecture search, control problems, and experimental tuning—domains in which gradient-based methods may fail or be inapplicable. The library provides an easy interface to define an optimization problem (parameter space, loss function, budget) and then experiment with multiple strategies—evolutionary algorithms, Bayesian optimization, bandit methods, genetic algorithms, etc. ...