Showing 128 open source projects for "deep learning with python"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Keep company data safe with Chrome Enterprise Icon
    Keep company data safe with Chrome Enterprise

    Protect your business with AI policies and data loss prevention in the browser

    Make AI work your way with Chrome Enterprise. Block unapproved sites and set custom data controls that align with your company's policies.
    Download Chrome
  • 1
    Best-of Machine Learning with Python

    Best-of Machine Learning with Python

    A ranked list of awesome machine learning Python libraries

    ...If you like to add or update projects, feel free to open an issue, submit a pull request, or directly edit the projects.yaml. Contributions are very welcome! General-purpose machine learning and deep learning frameworks.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 2
    Stock prediction deep neural learning

    Stock prediction deep neural learning

    Predicting stock prices using a TensorFlow LSTM

    ...The fluctuations in stock prices are driven by the forces of supply and demand, which can be unpredictable at times. To identify patterns and trends in stock prices, deep learning techniques can be used for machine learning. Long short-term memory (LSTM) is a type of recurrent neural network (RNN) that is specifically designed for sequence modeling and prediction.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 3
    Playground Cheatsheet for Python

    Playground Cheatsheet for Python

    Playground and cheatsheet for learning Python

    learn-python is another repository by Oleksii Trekhleb that serves as both a playground and an interactive cheatsheet for learning Python. It contains numerous Python scripts organized by topic (lists, dictionaries, loops, functions, classes, modules, etc.), each with code examples, explanations, test assertions, and links to further readings.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 4
    Python Outlier Detection

    Python Outlier Detection

    A Python toolbox for scalable outlier detection

    PyOD is a comprehensive and scalable Python toolkit for detecting outlying objects in multivariate data. This exciting yet challenging field is commonly referred as outlier detection or anomaly detection. PyOD includes more than 30 detection algorithms, from classical LOF (SIGMOD 2000) to the latest COPOD (ICDM 2020) and SUOD (MLSys 2021). Since 2017, PyOD [AZNL19] has been successfully used in numerous academic researches and commercial products [AZHC+21, AZNHL19]. PyOD has multiple neural...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Simplify Purchasing For Your Business Icon
    Simplify Purchasing For Your Business

    Manage what you buy and how you buy it with Order.co, so you have control over your time and money spent.

    Simplify every aspect of buying for your business in Order.co. From sourcing products to scaling purchasing across locations to automating your AP and approvals workstreams, Order.co is the platform of choice for growing businesses.
    Learn More
  • 5
    DeepSeed

    DeepSeed

    Deep learning optimization library making distributed training easy

    DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective. DeepSpeed delivers extreme-scale model training for everyone, from data scientists training on massive supercomputers to those training on low-end clusters or even on a single GPU. Using current generation of GPU clusters with hundreds of devices, 3D parallelism of DeepSpeed can efficiently train deep learning models with trillions of parameters. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 6
    Pyro

    Pyro

    Deep universal probabilistic programming with Python and PyTorch

    Pyro is a flexible, universal probabilistic programming language (PPL) built on PyTorch. It allows for expressive deep probabilistic modeling, combining the best of modern deep learning and Bayesian modeling. Pyro is centered on four main principles: Universal, Scalable, Minimal and Flexible. Pyro is universal in that it can represent any computable probability distribution. It scales easily to large datasets with minimal overhead, and has a small yet powerful core of composable abstractions that make it both agile and maintainable. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 7
    PyTorch Geometric

    PyTorch Geometric

    Geometric deep learning extension library for PyTorch

    It consists of various methods for deep learning on graphs and other irregular structures, also known as geometric deep learning, from a variety of published papers. In addition, it consists of an easy-to-use mini-batch loader for many small and single giant graphs, a large number of common benchmark datasets (based on simple interfaces to create your own), and helpful transforms, both for learning on arbitrary graphs as well as on 3D meshes or point clouds. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    AutoKeras

    AutoKeras

    AutoML library for deep learning

    AutoKeras: An AutoML system based on Keras. It is developed by DATA Lab at Texas A&M University. The goal of AutoKeras is to make machine learning accessible to everyone. AutoKeras only support Python 3. If you followed previous steps to use virtualenv to install tensorflow, you can just activate the virtualenv. Currently, AutoKeras is only compatible with Python >= 3.7 and TensorFlow >= 2.8.0. AutoKeras supports several tasks with extremely simple interface. AutoKeras would search for the best detailed configuration for you. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Darts

    Darts

    A python library for easy manipulation and forecasting of time series

    darts is a Python library for easy manipulation and forecasting of time series. It contains a variety of models, from classics such as ARIMA to deep neural networks. The models can all be used in the same way, using fit() and predict() functions, similar to scikit-learn. The library also makes it easy to backtest models, combine the predictions of several models, and take external data into account.
    Downloads: 4 This Week
    Last Update:
    See Project
  • Say goodbye to broken revenue funnels and poor customer experiences Icon
    Say goodbye to broken revenue funnels and poor customer experiences

    Connect and coordinate your data, signals, tools, and people at every step of the customer journey.

    LeanData is a Demand Management solution that supports all go-to-market strategies such as account-based sales development, geo-based territories, and more. LeanData features a visual, intuitive workflow native to Salesforce that enables users to view their entire lead flow in one interface. LeanData allows users to access the drag-and-drop feature to route their leads. LeanData also features an algorithms match that uses multiple fields in Salesforce.
    Learn More
  • 10
    Lightly

    Lightly

    A python library for self-supervised learning on images

    A python library for self-supervised learning on images. We, at Lightly, are passionate engineers who want to make deep learning more efficient. That's why - together with our community - we want to popularize the use of self-supervised methods to understand and curate raw image data. Our solution can be applied before any data annotation step and the learned representations can be used to visualize and analyze datasets.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 11
    Albumentations

    Albumentations

    Fast image augmentation library and an easy-to-use wrapper

    ...Albumentations works well with data from different domains: photos, medical images, satellite imagery, manufacturing and industrial applications, Generative Adversarial Networks. Albumentations can work with various deep learning frameworks such as PyTorch and Keras.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    DGL

    DGL

    Python package built to ease deep learning on graph

    ...Scale to giant graphs via multi-GPU acceleration and distributed training infrastructure. DGL empowers a variety of domain-specific projects including DGL-KE for learning large-scale knowledge graph embeddings, DGL-LifeSci for bioinformatics and cheminformatics, and many others. We are keen to bringing graphs closer to deep learning researchers. We want to make it easy to implement graph neural networks model family. We also want to make the combination of graph based modules and tensor based modules (PyTorch or MXNet) as smooth as possible. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    spaCy

    spaCy

    Industrial-strength Natural Language Processing (NLP)

    spaCy is a library built on the very latest research for advanced Natural Language Processing (NLP) in Python and Cython. Since its inception it was designed to be used for real world applications-- for building real products and gathering real insights. It comes with pretrained statistical models and word vectors, convolutional neural network models, easy deep learning integration and so much more. spaCy is the fastest syntactic parser in the world according to independent benchmarks, with an accuracy within 1% of the best available. ...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 14
    PyG

    PyG

    Graph Neural Network Library for PyTorch

    PyG (PyTorch Geometric) is a library built upon PyTorch to easily write and train Graph Neural Networks (GNNs) for a wide range of applications related to structured data. It consists of various methods for deep learning on graphs and other irregular structures, also known as geometric deep learning, from a variety of published papers. In addition, it consists of easy-to-use mini-batch loaders for operating on many small and single giant graphs, multi GPU-support, DataPipe support, distributed graph learning via Quiver, a large number of common benchmark datasets (based on simple interfaces to create your own), the GraphGym experiment manager, and helpful transforms, both for learning on arbitrary graphs as well as on 3D meshes or point clouds. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    DocTR

    DocTR

    Library for OCR-related tasks powered by Deep Learning

    DocTR provides an easy and powerful way to extract valuable information from your documents. Seemlessly process documents for Natural Language Understanding tasks: we provide OCR predictors to parse textual information (localize and identify each word) from your documents. Robust 2-stage (detection + recognition) OCR predictors with pretrained parameters. User-friendly, 3 lines of code to load a document and extract text with a predictor. State-of-the-art performances on public document...
    Downloads: 10 This Week
    Last Update:
    See Project
  • 16
    DeepPavlov

    DeepPavlov

    A library for deep learning end-to-end dialog systems and chatbots

    ...It has comprehensive and flexible tools that let developers and NLP researchers create production-ready conversational skills and complex multi-skill conversational assistants. Use BERT and other state-of-the-art deep learning models to solve classification, NER, Q&A and other NLP tasks. DeepPavlov Agent allows building industrial solutions with multi-skill integration via API services.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 17
    MMDeploy

    MMDeploy

    OpenMMLab Model Deployment Framework

    MMDeploy is an open-source deep learning model deployment toolset. It is a part of the OpenMMLab project. Models can be exported and run in several backends, and more will be compatible. All kinds of modules in the SDK can be extended, such as Transform for image processing, Net for Neural Network inference, Module for postprocessing and so on. Install and build your target backend.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 18
    Homemade Machine Learning

    Homemade Machine Learning

    Python examples of popular machine learning algorithms

    homemade-machine-learning is a repository by Oleksii Trekhleb containing Python implementations of classic machine-learning algorithms done “from scratch”, meaning you don’t rely heavily on high-level libraries but instead write the logic yourself to deepen understanding. Each algorithm is accompanied by mathematical explanations, visualizations (often via Jupyter notebooks), and interactive demos so you can tweak parameters, data, and observe outcomes in real time. ...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 19
    SageMaker Hugging Face Inference Toolkit

    SageMaker Hugging Face Inference Toolkit

    Library for serving Transformers models on Amazon SageMaker

    ...It utilizes the SageMaker Inference Toolkit for starting up the model server, which is responsible for handling inference requests. For the Dockerfiles used for building SageMaker Hugging Face Containers, see AWS Deep Learning Containers. The SageMaker Hugging Face Inference Toolkit implements various additional environment variables to simplify your deployment experience. The Hugging Face Inference Toolkit allows user to override the default methods of the HuggingFaceHandlerService. SageMaker Hugging Face Inference Toolkit is licensed under the Apache 2.0 License.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 20
    CoreNet

    CoreNet

    CoreNet: A library for training deep neural networks

    CoreNet is Apple’s internal deep learning framework for distributed neural network training, designed for high scalability, low-latency communication, and strong hardware efficiency. It focuses on enabling large-scale model training across clusters of GPUs and accelerators by optimizing data flow and parallelism strategies. CoreNet provides abstractions for data, tensor, and pipeline parallelism, allowing models to scale without code duplication or heavy manual configuration. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    DeepXDE

    DeepXDE

    A library for scientific machine learning & physics-informed learning

    DeepXDE is a library for scientific machine learning and physics-informed learning. DeepXDE includes the following algorithms. Physics-informed neural network (PINN). Solving different problems. Solving forward/inverse ordinary/partial differential equations (ODEs/PDEs) [SIAM Rev.] Solving forward/inverse integro-differential equations (IDEs) [SIAM Rev.] fPINN: solving forward/inverse fractional PDEs (fPDEs) [SIAM J. Sci. Comput.] NN-arbitrary polynomial chaos (NN-aPC): solving...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 22
    AudioCraft

    AudioCraft

    Audiocraft is a library for audio processing and generation

    AudioCraft is a PyTorch library for text-to-audio and text-to-music generation, packaging research models and tooling for training and inference. It includes MusicGen for music generation conditioned on text (and optionally melody) and AudioGen for text-conditioned sound effects and environmental audio. Both models operate over discrete audio tokens produced by a neural codec (EnCodec), which acts like a tokenizer for waveforms and enables efficient sequence modeling. The repo provides...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    Recommenders 2023

    Recommenders 2023

    Best Practices on Recommendation Systems

    Recommenders objective is to assist researchers, developers and enthusiasts in prototyping, experimenting with and bringing to production a range of classic and state-of-the-art recommendation systems. Recommenders is a project under the Linux Foundation of AI and Data.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Shumai

    Shumai

    Fast Differentiable Tensor Library in JavaScript & TypeScript with Bun

    Shumai is an experimental differentiable tensor library for TypeScript and JavaScript, developed by Facebook Research. It provides a high-performance framework for numerical computing and machine learning within modern JavaScript runtimes. Built on Bun and Flashlight, with ArrayFire as its numerical backend, Shumai brings GPU-accelerated tensor operations, automatic differentiation, and scientific computing tools directly to JavaScript developers. It allows seamless integration of machine learning, deep learning, and custom differentiable programs into web-based or server-side environments without relying on Python frameworks. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 25
    TensorFlow

    TensorFlow

    TensorFlow is an open source library for machine learning

    Originally developed by Google for internal use, TensorFlow is an open source platform for machine learning. Available across all common operating systems (desktop, server and mobile), TensorFlow provides stable APIs for Python and C as well as APIs that are not guaranteed to be backwards compatible or are 3rd party for a variety of other languages. The platform can be easily deployed on multiple CPUs, GPUs and Google's proprietary chip, the tensor processing unit (TPU). ...
    Downloads: 20 This Week
    Last Update:
    See Project