Showing 8 open source projects for "data vision"

View related business solutions
  • Build Secure Enterprise Apps Fast with Retool Icon
    Build Secure Enterprise Apps Fast with Retool

    Stop wasting engineering hours. Build secure, production-grade apps that connect directly to your company’s SQL and APIs.

    Create internal software that meets enterprise security standards. Retool connects to your business data—databases, APIs, and vector stores while ensuring compliance with granular permissions and audit logs. Whether on our cloud or self-hosted, build the dashboards and admin panels your organization needs without compromising on security or control.
    Learn More
  • Find Hidden Risks in Windows Task Scheduler Icon
    Find Hidden Risks in Windows Task Scheduler

    Free diagnostic script reveals configuration issues, error patterns, and security risks. Instant HTML report.

    Windows Task Scheduler might be hiding critical failures. Download the free JAMS diagnostic tool to uncover problems before they impact production—get a color-coded risk report with clear remediation steps in minutes.
    Download Free Tool
  • 1
    Kornia

    Kornia

    Open Source Differentiable Computer Vision Library

    Kornia is a differentiable computer vision library for PyTorch. It consists of a set of routines and differentiable modules to solve generic computer vision problems. At its core, the package uses PyTorch as its main backend both for efficiency and to take advantage of the reverse-mode auto-differentiation to define and compute the gradient of complex functions. Inspired by existing packages, this library is composed by a subset of packages containing operators that can be inserted within...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Albumentations

    Albumentations

    Fast image augmentation library and an easy-to-use wrapper

    ...Albumentations supports different computer vision tasks such as classification, semantic segmentation, instance segmentation, object detection, and pose estimation. Albumentations works well with data from different domains: photos, medical images, satellite imagery, manufacturing and industrial applications, Generative Adversarial Networks. Albumentations can work with various deep learning frameworks such as PyTorch and Keras.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 3
    CoreNet

    CoreNet

    CoreNet: A library for training deep neural networks

    CoreNet is Apple’s internal deep learning framework for distributed neural network training, designed for high scalability, low-latency communication, and strong hardware efficiency. It focuses on enabling large-scale model training across clusters of GPUs and accelerators by optimizing data flow and parallelism strategies. CoreNet provides abstractions for data, tensor, and pipeline parallelism, allowing models to scale without code duplication or heavy manual configuration. Its distributed runtime manages synchronization, load balancing, and mixed-precision computation to maximize throughput while minimizing communication bottlenecks. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    CO3D (Common Objects in 3D)

    CO3D (Common Objects in 3D)

    Tooling for the Common Objects In 3D dataset

    CO3Dv2 (Common Objects in 3D, version 2) is a large-scale 3D computer vision dataset and toolkit from Facebook Research designed for training and evaluating category-level 3D reconstruction methods using real-world data. It builds upon the original CO3Dv1 dataset, expanding both scale and quality—featuring 2× more sequences and 4× more frames, with improved image fidelity, more accurate segmentation masks, and enhanced annotations for object-centric 3D reconstruction. ...
    Downloads: 3 This Week
    Last Update:
    See Project
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • 5
    iJEPA

    iJEPA

    Official codebase for I-JEPA

    ...This objective sidesteps generative pixel losses and avoids heavy negative sampling, producing features that transfer strongly with linear probes and minimal fine-tuning. The design scales naturally with Vision Transformer backbones and flexible masking strategies, and it trains stably at large batch sizes. i-JEPA’s predictions are made in embedding space, which is computationally efficient and better aligned with downstream discrimination tasks. The repository provides training recipes, data pipelines, and evaluation code that clarify which masking patterns and architectural choices matter most.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 6
    CNN for Image Retrieval
    ...The repository provides implementations of CNN-based methods to extract feature representations from images and use them for similarity-based retrieval. It focuses on applying deep learning techniques to improve upon traditional handcrafted descriptors by learning features directly from data. The code includes training and evaluation scripts that can be adapted for custom datasets, making it useful for experimenting with retrieval systems in computer vision. By leveraging CNN architectures, the project showcases how learned embeddings can capture semantic similarity across varied images. This resource serves as both an educational reference and a foundation for further exploration in image retrieval research.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 7
    SFD

    SFD

    S³FD: Single Shot Scale-invariant Face Detector, ICCV, 2017

    S³FD (Single Shot Scale-invariant Face Detector) is a real-time face detection framework designed to handle faces of various sizes with high accuracy using a single deep neural network. Developed by Shifeng Zhang, S³FD introduces a scale-compensation anchor matching strategy and enhanced detection architecture that makes it especially effective for detecting small faces—a long-standing challenge in face detection research. The project builds upon the SSD framework in Caffe, with...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 8

    ProximityForest

    Efficient Approximate Nearest Neighbors for General Metric Spaces

    A proximity forest is a data structure that allows for efficient computation of approximate nearest neighbors of arbitrary data elements in a metric space. See: O'Hara and Draper, "Are You Using the Right Approximate Nearest Neighbor Algorithm?", WACV 2013 (best student paper award). One application of a ProximityForest is given in the following CVPR publication: Stephen O'Hara and Bruce A.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next