CRFasRNN
Semantic image segmentation method described in the ICCV 2015 paper
CRF-RNN is a deep neural architecture that integrates fully connected Conditional Random Fields (CRFs) with Convolutional Neural Networks (CNNs) by reformulating mean-field CRF inference as a Recurrent Neural Network. This fusion enables end-to-end training via backpropagation for semantic image segmentation tasks, eliminating the need for separate, offline post-processing steps. Our work allows computers to recognize objects in images, what is distinctive about our work is that we also recover the 2D outline of objects. Currently we have trained this model to recognize 20 classes. This software allows you to test our algorithm on your own images – have a try and see if you can fool it, if you get some good examples you can send them to us. ...