Showing 573 open source projects for "compiler python linux"

View related business solutions
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    Build gen AI apps with an all-in-one modern database: MongoDB Atlas

    MongoDB Atlas provides built-in vector search and a flexible document model so developers can build, scale, and run gen AI apps without stitching together multiple databases. From LLM integration to semantic search, Atlas simplifies your AI architecture—and it’s free to get started.
    Start Free
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1
    XGBoost

    XGBoost

    Scalable and Flexible Gradient Boosting

    XGBoost is an optimized distributed gradient boosting library, designed to be scalable, flexible, portable and highly efficient. It supports regression, classification, ranking and user defined objectives, and runs on all major operating systems and cloud platforms. XGBoost works by implementing machine learning algorithms under the Gradient Boosting framework. It also offers parallel tree boosting (GBDT, GBRT or GBM) that can quickly and accurately solve many data science problems....
    Downloads: 5 This Week
    Last Update:
    See Project
  • 2
    Google CTF

    Google CTF

    Google CTF

    Google CTF is the public repository that houses most of the challenges from Google’s Capture-the-Flag competitions since 2017 and the infrastructure used to run them. It’s a learning and practice archive: competitors and educators can replay tasks across categories like pwn, reversing, crypto, web, sandboxing, and forensics. The code and binaries intentionally contain vulnerabilities—by design—so users can explore exploit chains and patching in realistic settings. The repo also includes...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    CoreNet

    CoreNet

    CoreNet: A library for training deep neural networks

    CoreNet is Apple’s internal deep learning framework for distributed neural network training, designed for high scalability, low-latency communication, and strong hardware efficiency. It focuses on enabling large-scale model training across clusters of GPUs and accelerators by optimizing data flow and parallelism strategies. CoreNet provides abstractions for data, tensor, and pipeline parallelism, allowing models to scale without code duplication or heavy manual configuration. Its distributed...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Papis

    Papis

    Powerful and highly extensible command-line based document

    Papis is a powerful and highly extensible CLI document and bibliography manager. With Papis, you can search your library for books and papers, add documents and notes, import and export to and from other formats, and much much more. Papis uses a human-readable and easily hackable .yaml file to store each entry's bibliographical data. It strives to be easy to use while providing a wide range of features. And for those who still want more, Papis makes it easy to write scripts that extend its...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Build Securely on Azure with Proven Frameworks Icon
    Build Securely on Azure with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 5
    HelloGitHub

    HelloGitHub

    Share interesting, entry-level open source projects on GitHub

    HelloGitHub shares interesting, entry-level open source projects on GitHub. It is updated and released in the form of a monthly magazine on the 28th of every month. The content includes interesting, entry-level open-source projects, open-source books, practical projects, enterprise-level projects, etc., so that you can feel the charm of open source in a short time and fall in love with open source! At first, I just wanted to collect interesting, high-quality, and easy-to-use projects that I...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    OpenAI Cookbook

    OpenAI Cookbook

    Examples and guides for using the OpenAI API

    openai-cookbook is a repository containing example code, tutorials, and guidance for how to build real applications on top of the OpenAI API. It covers a wide range of use cases: prompt engineering, embeddings and semantic search, fine-tuning, agent architectures, function calling, working with images, chat workflows, and more. The content is primarily in Python (notebooks, scripts), but the conceptual guidance is applicable across languages. The repository is kept up to date and often...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 7
    Lightweight' GAN

    Lightweight' GAN

    Implementation of 'lightweight' GAN, proposed in ICLR 2021

    Implementation of 'lightweight' GAN proposed in ICLR 2021, in Pytorch. The main contribution of the paper is a skip-layer excitation in the generator, paired with autoencoding self-supervised learning in the discriminator. Quoting the one-line summary "converge on single gpu with few hours' training, on 1024 resolution sub-hundred images". Augmentation is essential for Lightweight GAN to work effectively in a low data setting. You can test and see how your images will be augmented before...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 8
    QuantumOptics.jl

    QuantumOptics.jl

    Library for the numerical simulation of closed as well as open quantum

    QuantumOptics.jl is a numerical framework written in the Julia programming language that makes it easy to simulate various kinds of open quantum systems. It is inspired by the Quantum Optics Toolbox for MATLAB and the Python framework QuTiP. QuantumOptics.jl optimizes processor usage and memory consumption by relying on different ways to store and work with operators. The framework comes with a plethora of pre-defined systems and interactions making it very easy to focus on the physics, not...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 9
    EKS Best Practices

    EKS Best Practices

    A best practices guide for day 2 operations

    The Amazon EKS Best Practices Guide is a public repository containing comprehensive documentation and guidance for operating production-grade Kubernetes clusters on AWS’s managed service, Amazon EKS. Rather than a code library, it serves as a reference catalogue of patterns, anti-patterns, checklists and architectures across domains such as security, reliability, scalability, networking, cost optimization and hybrid cloud deployments. The repository is maintained by AWS but open to...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Build Securely on AWS with Proven Frameworks Icon
    Build Securely on AWS with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 10
    Double Conversion

    Double Conversion

    Efficient binary-decimal & decimal-binary conversion routines for IEEE

    Double Conversion is a high-performance C++ library that provides precise and efficient binary-decimal and decimal-binary conversion routines for IEEE 754 double-precision floating-point numbers. Originally extracted from the V8 JavaScript engine, it was refactored into a standalone library to make its robust number conversion algorithms easily reusable in other projects. The library ensures consistent and accurate results for converting between double values and their string...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Tunix

    Tunix

    A JAX-native LLM Post-Training Library

    Tunix is a JAX-native library for post-training large language models, bringing supervised fine-tuning, reinforcement learning–based alignment, and knowledge distillation into one coherent toolkit. It embraces JAX’s strengths—functional programming, jit compilation, and effortless multi-device execution—so experiments scale from a single GPU to pods of TPUs with minimal code changes. The library is organized around modular pipelines for data loading, rollout, optimization, and evaluation,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Flax

    Flax

    Flax is a neural network library for JAX

    Flax is a flexible neural-network library for JAX that embraces functional programming while offering ergonomic module abstractions. Its design separates pure computation from state by threading parameter collections and RNGs explicitly, enabling reproducibility, transformation, and easy experimentation with JAX transforms like jit, pmap, and vmap. Modules define parameterized computations, but initialization and application remain side-effect free, which pairs naturally with JAX’s staging...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    RLax

    RLax

    Library of JAX-based building blocks for reinforcement learning agents

    RLax (pronounced “relax”) is a JAX-based library developed by Google DeepMind that provides reusable mathematical building blocks for constructing reinforcement learning (RL) agents. Rather than implementing full algorithms, RLax focuses on the core functional operations that underpin RL methods—such as computing value functions, returns, policy gradients, and loss terms—allowing researchers to flexibly assemble their own agents. It supports both on-policy and off-policy learning, as well as...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    MuJoCo Playground

    MuJoCo Playground

    An open source library for GPU-accelerated robot learning

    MuJoCo Playground, developed by Google DeepMind, is a GPU-accelerated suite of simulation environments for robot learning and sim-to-real research, built on top of MuJoCo MJX. It unifies a range of control, locomotion, and manipulation tasks into a consistent and scalable framework optimized for JAX and Warp backends. The project includes classic control benchmarks from dm_control, advanced quadruped and bipedal locomotion systems, and dexterous as well as non-prehensile manipulation setups....
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Penzai

    Penzai

    A JAX research toolkit to build, edit, & visualize neural networks

    Penzai, developed by Google DeepMind, is a JAX-based library for representing, visualizing, and manipulating neural network models as functional pytree data structures. It is designed to make machine learning research more interpretable and interactive, particularly for tasks like model surgery, ablation studies, architecture debugging, and interpretability research. Unlike conventional neural network libraries, Penzai exposes the full internal structure of models, enabling fine-grained...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Multimodal

    Multimodal

    TorchMultimodal is a PyTorch library

    This project, also known as TorchMultimodal, is a PyTorch library for building, training, and experimenting with multimodal, multi-task models at scale. The library provides modular building blocks such as encoders, fusion modules, loss functions, and transformations that support combining modalities (vision, text, audio, etc.) in unified architectures. It includes a collection of ready model classes—like ALBEF, CLIP, BLIP-2, COCA, FLAVA, MDETR, and Omnivore—that serve as reference...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Theseus

    Theseus

    A library for differentiable nonlinear optimization

    Theseus is a library for differentiable nonlinear optimization that lets you embed solvers like Gauss-Newton or Levenberg–Marquardt inside PyTorch models. Problems are expressed as factor graphs with variables on manifolds (e.g., SE(3), SO(3)), so classical robotics and vision tasks—bundle adjustment, pose graph optimization, hand–eye calibration—can be written succinctly and solved efficiently. Because solves are differentiable, you can backpropagate through optimization to learn cost...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Prompt Engineering Interactive Tutorial

    Prompt Engineering Interactive Tutorial

    Anthropic's Interactive Prompt Engineering Tutorial

    Prompt-eng-interactive-tutorial is a comprehensive, hands-on tutorial that teaches the craft of prompt engineering with Claude through guided, executable lessons. It starts with the anatomy of a good prompt and moves into techniques that deliver the “80/20” gains—separating instructions from data, specifying schemas, and setting evaluation criteria. The course leans heavily on realistic failure modes (ambiguity, hallucination, brittle instructions) and shows how to iteratively debug prompts...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Courses (Anthropic)

    Courses (Anthropic)

    Anthropic's educational courses

    Anthropic’s courses repository is a growing collection of self-paced learning materials that teach practical AI skills using Claude and the Anthropic API. It’s organized as a sequence of hands-on courses—starting with API fundamentals and prompt engineering—so learners build capability step by step rather than in isolation. Each course mixes short readings with runnable notebooks and exercises, guiding you through concepts like model parameters, streaming, multimodal prompts, structured...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    DeepEP

    DeepEP

    DeepEP: an efficient expert-parallel communication library

    DeepEP is a communication library designed specifically to support Mixture-of-Experts (MoE) and expert parallelism (EP) deployments. Its core role is to implement high-throughput, low-latency all-to-all GPU communication kernels, which handle the dispatching of tokens to different experts (or shards) and then combining expert outputs back into the main data flow. Because MoE architectures require routing inputs to different experts, communication overhead can become a bottleneck — DeepEP...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    django-split-settings

    django-split-settings

    Organize Django settings into multiple files and directories

    Organize Django settings into multiple files and directories. Easily override and modify settings. Use wildcards in settings file paths and mark settings files as optional. Managing Django’s settings might be tricky. There are severals issues which are encountered by any Django developer along the way. First one is caused by the default project structure. Django clearly offers us a single settings.py file. It seams reasonable at the first glance. And it is actually easy to use just after the...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Opacus

    Opacus

    Training PyTorch models with differential privacy

    Opacus is a library that enables training PyTorch models with differential privacy. It supports training with minimal code changes required on the client, has little impact on training performance, and allows the client to online track the privacy budget expended at any given moment. Vectorized per-sample gradient computation that is 10x faster than micro batching. Supports most types of PyTorch models and can be used with minimal modification to the original neural network. Open source,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    PyG

    PyG

    Graph Neural Network Library for PyTorch

    PyG (PyTorch Geometric) is a library built upon PyTorch to easily write and train Graph Neural Networks (GNNs) for a wide range of applications related to structured data. It consists of various methods for deep learning on graphs and other irregular structures, also known as geometric deep learning, from a variety of published papers. In addition, it consists of easy-to-use mini-batch loaders for operating on many small and single giant graphs, multi GPU-support, DataPipe support,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    nghttp2

    nghttp2

    HTTP/2 C Library and tools

    nghttp2 is an implementation of HTTP/2 and its header compression algorithm HPACK in C. The framing layer of HTTP/2 is implemented as a form of reusable C library. On top of that, we have implemented HTTP/2 client, server and proxy. We have also developed a load test and benchmarking tool for HTTP/2. We have participated in httpbis working group since HTTP/2 draft-04, which is the first implementation draft. Since then we have updated nghttp2 library constantly to the latest specification...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 25
    Lets-Plot

    Lets-Plot

    Multiplatform plotting library based on Grammar of Graphics

    Lets-Plot is a multiplatform plotting library based on the Grammar of Graphics. The library' design is heavily influenced by Leland Wilkinson work The Grammar of Graphics describing the deep features that underlie all statistical graphics.
    Downloads: 0 This Week
    Last Update:
    See Project