Showing 5 open source projects for "python q learning"

View related business solutions
  • Powering the next decade of business messaging | Twilio MessagingX Icon
    Powering the next decade of business messaging | Twilio MessagingX

    For organizations interested programmable APIs built on a scalable business messaging platform

    Build unique experiences across SMS, MMS, Facebook Messenger, and WhatsApp – with our unified messaging APIs.
    Learn More
  • Ninox | The low-code platform for all business processes Icon
    Ninox | The low-code platform for all business processes

    With Ninox (SaaS), build business apps and databases as you want, including for CRM and ERP, without a single line of code (no-code/low-code).

    With Ninox you can store and organize your complex data in your own structured way. Ninox provides a highly customizable user interface which allows you to process, analyze and evaluate any kind of data. Furthermore you can integrate different services e.g. from Google with Ninox's API.
    Learn More
  • 1
    Netron

    Netron

    Visualizer for neural network, deep learning, machine learning models

    ...There is an extense variety of sample model files to download or open using the browser version. It is supported by macOS, Windows, Linux, Python Server and browser.
    Downloads: 54 This Week
    Last Update:
    See Project
  • 2
    TensorFlow

    TensorFlow

    TensorFlow is an open source library for machine learning

    Originally developed by Google for internal use, TensorFlow is an open source platform for machine learning. Available across all common operating systems (desktop, server and mobile), TensorFlow provides stable APIs for Python and C as well as APIs that are not guaranteed to be backwards compatible or are 3rd party for a variety of other languages. The platform can be easily deployed on multiple CPUs, GPUs and Google's proprietary chip, the tensor processing unit (TPU). ...
    Downloads: 23 This Week
    Last Update:
    See Project
  • 3
    Earth Engine API

    Earth Engine API

    Python and JavaScript bindings for calling the Earth Engine API

    The Earth Engine API provides Python and JavaScript client libraries for Google Earth Engine, a planetary-scale geospatial analysis platform. With it, users compose lazy, server-side computations over massive catalogs of satellite imagery and vector datasets without handling raw files locally. The API exposes functional operators for map algebra, reducers, joins, and machine learning that scale transparently on Earth Engine’s backend.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 4
    Hacker Scripts

    Hacker Scripts

    Based on a true story

    Hacker Scripts is a cheeky collection of small automation scripts and language ports collected under the tagline “Based on a true story.” The repository gathers playful utilities (originally shell and Ruby scripts) that automate short, real-world tasks — for example, sending a quick “late at work” text when SSH sessions are active, firing off an automated “I’m sick / working from home” email on certain mornings, or even talking to a networked coffee machine to start brewing at precisely the...
    Downloads: 31 This Week
    Last Update:
    See Project
  • Intelligent Automation Solutions Built for Modern Finance Teams Icon
    Intelligent Automation Solutions Built for Modern Finance Teams

    We do CFO stuff.

    Digitally transform your business with workflow automation and integrated payment solutions. Digitally store and secure your data with advanced search and accessibility features that keeps your documents at the tip of your team’s fingers.
    Learn More
  • 5
    ConvNetJS

    ConvNetJS

    Deep learning in Javascript to train convolutional neural networks

    ConvNetJS is a Javascript library for training Deep Learning models (Neural Networks) entirely in your browser. Open a tab and you're training. No software requirements, no compilers, no installations, no GPUs, no sweat. ConvNetJS is an implementation of Neural networks, together with nice browser-based demos. It currently supports common Neural Network modules (fully connected layers, non-linearities), classification (SVM/Softmax) and Regression (L2) cost functions, ability to specify and train Convolutional Networks that process images, and experimental Reinforcement Learning modules, based on Deep Q Learning. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next