Showing 38 open source projects for "python q learning"

View related business solutions
  • Cloud-based help desk software with ServoDesk Icon
    Cloud-based help desk software with ServoDesk

    Full access to Enterprise features. No credit card required.

    What if You Could Automate 90% of Your Repetitive Tasks in Under 30 Days? At ServoDesk, we help businesses like yours automate operations with AI, allowing you to cut service times in half and increase productivity by 25% - without hiring more staff.
    Try ServoDesk for free
  • Total Network Visibility for Network Engineers and IT Managers Icon
    Total Network Visibility for Network Engineers and IT Managers

    Network monitoring and troubleshooting is hard. TotalView makes it easy.

    This means every device on your network, and every interface on every device is automatically analyzed for performance, errors, QoS, and configuration.
    Learn More
  • 1
    Tencent-Hunyuan-Large

    Tencent-Hunyuan-Large

    Open-source large language model family from Tencent Hunyuan

    Tencent-Hunyuan-Large is the flagship open-source large language model family from Tencent Hunyuan, offering both pre-trained and instruct (fine-tuned) variants. It is designed with long-context capabilities, quantization support, and high performance on benchmarks across general reasoning, mathematics, language understanding, and Chinese / multilingual tasks. It aims to provide competitive capability with efficient deployment and inference. FP8 quantization support to reduce memory usage...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Qwen3 Embedding

    Qwen3 Embedding

    Designed for text embedding and ranking tasks

    Qwen3-Embedding is a model series from the Qwen family designed specifically for text embedding and ranking tasks. It builds upon the Qwen3 base/dense models and offers several sizes (0.6B, 4B, 8B parameters), for both embedding and reranking, with high multilingual capability, long‐context understanding, and reasoning. It achieves state-of-the-art performance on benchmarks like MTEB (Multilingual Text Embedding Benchmark) and supports instruction-aware embedding (i.e. embedding task...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Autolabel

    Autolabel

    Label, clean and enrich text datasets with LLMs

    Autolabel is a Python library to label, clean and enrich datasets with Large Language Models (LLMs). Autolabel data for NLP tasks such as classification, question-answering and named entity recognition, entity matching and more. Seamlessly use commercial and open-source LLMs from providers such as OpenAI, Anthropic, HuggingFace, Google and more.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    FinGPT

    FinGPT

    Open-Source Financial Large Language Models!

    FinGPT is an open-source large language model tailored specifically for financial tasks. Developed by AI4Finance Foundation, it is designed to assist with various financial applications, such as forecasting, financial sentiment analysis, and portfolio management. FinGPT has been trained on a diverse range of financial datasets, making it a powerful tool for finance professionals looking to leverage AI for data-driven decision-making. The model is freely available on platforms like Hugging...
    Leader badge
    Downloads: 13 This Week
    Last Update:
    See Project
  • All-in-one security tool helps you prevent ransomware and breaches. Icon
    All-in-one security tool helps you prevent ransomware and breaches.

    SIEM + Detection and Response for IT Teams

    Blumira’s detection and response platform enables faster resolution of threats to help you stop ransomware attacks and prevent data breaches. We surface real threats, providing meaningful findings so you know what to prioritize. With our 3-step rapid response, you can automatically block known threats, use our playbooks for easy remediation, or contact our security team for additional guidance. Our responsive security team helps with onboarding, triage and ongoing consultations to continuously help your organization improve your security coverage.
    Learn More
  • 5
    LLaMA

    LLaMA

    Inference code for Llama models

    “Llama” is the repository from Meta (formerly Facebook/Meta Research) containing the inference code for LLaMA (Large Language Model Meta AI) models. It provides utilities to load pre-trained LLaMA model weights, run inference (text generation, chat, completions), and work with tokenizers. Tokenizer utilities, download scripts, shell helpers to fetch model weights with correct licensing/permissions. Includes example scripts for chat completions and text completions to show how to call the...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Gorilla CLI

    Gorilla CLI

    LLMs for your CLI

    Gorilla CLI powers your command-line interactions with a user-centric tool. Simply state your objective, and Gorilla CLI will generate potential commands for execution. Gorilla today supports ~1500 APIs, including Kubernetes, AWS, GCP, Azure, GitHub, Conda, Curl, Sed, and many more. No more recalling intricate CLI arguments.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    aqueduct LLM

    aqueduct LLM

    Aqueduct allows you to run LLM and ML workloads on any infrastructure

    Aqueduct is an MLOps framework that allows you to define and deploy machine learning and LLM workloads on any cloud infrastructure. Aqueduct is an open-source MLOps framework that allows you to write code in vanilla Python, run that code on any cloud infrastructure you'd like to use, and gain visibility into the execution and performance of your models and predictions. Aqueduct's Python native API allows you to define ML tasks in regular Python code. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    LM Human Preferences

    LM Human Preferences

    Code for the paper Fine-Tuning Language Models from Human Preferences

    lm-human-preferences is the official OpenAI codebase that implements the method from the paper Fine-Tuning Language Models from Human Preferences. Its purpose is to show how to align language models with human judgments by training a reward model from human comparisons and then fine-tuning a policy model using that reward signal. The repository includes scripts to train the reward model (learning to rank or score pairs of outputs), and to fine-tune a policy (a language model) with...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    VALL-E

    VALL-E

    PyTorch implementation of VALL-E (Zero-Shot Text-To-Speech)

    We introduce a language modeling approach for text to speech synthesis (TTS). Specifically, we train a neural codec language model (called VALL-E) using discrete codes derived from an off-the-shelf neural audio codec model, and regard TTS as a conditional language modeling task rather than continuous signal regression as in previous work. During the pre-training stage, we scale up the TTS training data to 60K hours of English speech which is hundreds of times larger than existing systems....
    Downloads: 6 This Week
    Last Update:
    See Project
  • Smart Business Texting that Generates Pipeline Icon
    Smart Business Texting that Generates Pipeline

    Create and convert pipeline at scale through industry leading SMS campaigns, automation, and conversation management.

    TextUs is the leading text messaging service provider for businesses that want to engage in real-time conversations with customers, leads, employees and candidates. Text messaging is one of the most engaging ways to communicate with customers, candidates, employees and leads. 1:1, two-way messaging encourages response and engagement. Text messages help teams get 10x the response rate over phone and email. Business text messaging has become a more viable form of communication than traditional mediums. The TextUs user experience is intentionally designed to resemble the familiar SMS inbox, allowing users to easily manage contacts, conversations, and campaigns. Work right from your desktop with the TextUs web app or use the Chrome extension alongside your ATS or CRM. Leverage the mobile app for on-the-go sending and responding.
    Learn More
  • 10
    Learn Prompting

    Learn Prompting

    This website is a free, open-source guide on prompt engineering

    ...The competition featured 10 increasingly difficult levels of prompt hacking defenses and the chance to win over $35,000 in prizes. Coding is a great skill to learn alongside prompt engineering. We recommend learning Python, as it is a popular language for AI and machine learning. Be among the first to access the certification program as soon as it launches.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 11
    GPT-NeoX

    GPT-NeoX

    Implementation of model parallel autoregressive transformers on GPUs

    This repository records EleutherAI's library for training large-scale language models on GPUs. Our current framework is based on NVIDIA's Megatron Language Model and has been augmented with techniques from DeepSpeed as well as some novel optimizations. We aim to make this repo a centralized and accessible place to gather techniques for training large-scale autoregressive language models, and accelerate research into large-scale training. For those looking for a TPU-centric codebase, we...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 12
    Alpa

    Alpa

    Training and serving large-scale neural networks

    Alpa is a system for training and serving large-scale neural networks. Scaling neural networks to hundreds of billions of parameters has enabled dramatic breakthroughs such as GPT-3, but training and serving these large-scale neural networks require complicated distributed system techniques. Alpa aims to automate large-scale distributed training and serving with just a few lines of code.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Emb-GAM

    Emb-GAM

    An interpretable and efficient predictor using pre-trained models

    Deep learning models have achieved impressive prediction performance but often sacrifice interpretability, a critical consideration in high-stakes domains such as healthcare or policymaking. In contrast, generalized additive models (GAMs) can maintain interpretability but often suffer from poor prediction performance due to their inability to effectively capture feature interactions. In this work, we aim to bridge this gap by using pre-trained neural language models to extract embeddings for...
    Downloads: 0 This Week
    Last Update:
    See Project