• Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Cloud tools for web scraping and data extraction Icon
    Cloud tools for web scraping and data extraction

    Deploy pre-built tools that crawl websites, extract structured data, and feed your applications. Reliable web data without maintaining scrapers.

    Automate web data collection with cloud tools that handle anti-bot measures, browser rendering, and data transformation out of the box. Extract content from any website, push to vector databases for RAG workflows, or pipe directly into your apps via API. Schedule runs, set up webhooks, and connect to your existing stack. Free tier available, then scale as you need to.
    Explore 10,000+ tools
  • 1
    OpenLLM

    OpenLLM

    Operating LLMs in production

    An open platform for operating large language models (LLMs) in production. Fine-tune, serve, deploy, and monitor any LLMs with ease. With OpenLLM, you can run inference with any open-source large-language models, deploy to the cloud or on-premises, and build powerful AI apps. Built-in supports a wide range of open-source LLMs and model runtime, including Llama 2, StableLM, Falcon, Dolly, Flan-T5, ChatGLM, StarCoder, and more.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 2
    SentenceTransformers

    SentenceTransformers

    Multilingual sentence & image embeddings with BERT

    ...This can be useful for semantic textual similar, semantic search, or paraphrase mining. The framework is based on PyTorch and Transformers and offers a large collection of pre-trained models tuned for various tasks. Further, it is easy to fine-tune your own models. Our models are evaluated extensively and achieve state-of-the-art performance on various tasks. Further, the code is tuned to provide the highest possible speed.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 3
    PEFT

    PEFT

    State-of-the-art Parameter-Efficient Fine-Tuning

    Parameter-Efficient Fine-Tuning (PEFT) methods enable efficient adaptation of pre-trained language models (PLMs) to various downstream applications without fine-tuning all the model's parameters. Fine-tuning large-scale PLMs is often prohibitively costly. In this regard, PEFT methods only fine-tune a small number of (extra) model parameters, thereby greatly decreasing the computational and storage costs. Recent State-of-the-Art PEFT techniques achieve performance comparable to that of full fine-tuning.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 4
    H2O LLM Studio

    H2O LLM Studio

    Framework and no-code GUI for fine-tuning LLMs

    Welcome to H2O LLM Studio, a framework and no-code GUI designed for fine-tuning state-of-the-art large language models (LLMs). You can also use H2O LLM Studio with the command line interface (CLI) and specify the configuration file that contains all the experiment parameters. To finetune using H2O LLM Studio with CLI, activate the pipenv environment by running make shell. With H2O LLM Studio, training your large language model is easy and intuitive. First, upload your dataset and then start...
    Downloads: 5 This Week
    Last Update:
    See Project
  • Reach Your Audience with Rise Vision, the #1 Cloud Digital Signage Software Solution Icon
    Reach Your Audience with Rise Vision, the #1 Cloud Digital Signage Software Solution

    K-12 Schools, Higher Education, Businesses, Restaurants

    Rise Vision is the #1 digital signage company, offering easy-to-use cloud digital signage software compatible with any player across multiple screens. Forget about static displays. Save time and boost sales with 500+ customizable content templates for your screens. If you ever need help, get free training and exceptionally fast support.
    Learn More
  • 5
    Gemma

    Gemma

    Gemma open-weight LLM library, from Google DeepMind

    Gemma, developed by Google DeepMind, is a family of open-weights large language models (LLMs) built upon the research and technology behind Gemini. This repository provides the official implementation of the Gemma PyPI package, a JAX-based library that enables users to load, interact with, and fine-tune Gemma models. The framework supports both text and multi-modal input, allowing natural language conversations that incorporate visual content such as images. It includes APIs for conversational sampling, parameter management, and integration with fine-tuning methods like LoRA. The Gemma library can operate efficiently on CPUs, GPUs, or TPUs, with recommended configurations depending on model size. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 6
    LLaMA 3

    LLaMA 3

    The official Meta Llama 3 GitHub site

    This repository is the former home for Llama 3 model artifacts and getting-started code, covering pre-trained and instruction-tuned variants across multiple parameter sizes. It introduced the public packaging of weights, licenses, and quickstart examples that helped developers fine-tune or run the models locally and on common serving stacks. As the Llama stack evolved, Meta consolidated repositories and marked this one deprecated, pointing users to newer, centralized hubs for models, utilities, and docs. Even as a deprecated repo, it documents the transition path and preserves references that clarify how Llama 3 releases map into the current ecosystem. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 7
    LM Human Preferences

    LM Human Preferences

    Code for the paper Fine-Tuning Language Models from Human Preferences

    ...Its purpose is to show how to align language models with human judgments by training a reward model from human comparisons and then fine-tuning a policy model using that reward signal. The repository includes scripts to train the reward model (learning to rank or score pairs of outputs), and to fine-tune a policy (a language model) with reinforcement learning (or related techniques) guided by that reward model. The code is provided “as is” and explicitly says it may no longer run out-of-the-box due to dependencies or dataset migrations. It was tested on the smallest GPT-2 (124M parameters) under a specific environment (TensorFlow 1.x, specific CUDA / cuDNN combinations). ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    bert4keras

    bert4keras

    Keras implement of transformers for humans

    ...The original intention of this project is for the convenience of modification and customization, so it may be updated frequently. Load the pre-trained weights of bert/roberta/albert for fine-tune. Implement the attention mask required by the language model and seq2seq. Pre-training code from zero (supports TPU, multi-GPU, please see pertaining). Compatible with keras, tf.keras.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next