MiniMax-M1
Open-weight, large-scale hybrid-attention reasoning model
MiniMax-M1 is presented as the world’s first open-weight, large-scale hybrid-attention reasoning model, designed to push the frontier of long-context, tool-using, and deeply “thinking” language models. It is built on the MiniMax-Text-01 foundation and keeps the same massive parameter budget, but reworks the attention and training setup for better reasoning and test-time compute scaling. Architecturally, it combines Mixture-of-Experts layers with lightning attention, enabling the model to support a native context length of 1 million tokens while using far fewer FLOPs than comparable reasoning models for very long generations. The team emphasizes efficient scaling of test-time compute: at 100K-token generation lengths, M1 reportedly uses only about 25 percent of the FLOPs of some competing models, making extended “think step” traces more feasible. ...