Showing 3 open source projects for "q learning algorithm"

View related business solutions
  • Keep company data safe with Chrome Enterprise Icon
    Keep company data safe with Chrome Enterprise

    Protect your business with AI policies and data loss prevention in the browser

    Make AI work your way with Chrome Enterprise. Block unapproved sites and set custom data controls that align with your company's policies.
    Download Chrome
  • Cloud-based help desk software with ServoDesk Icon
    Cloud-based help desk software with ServoDesk

    Full access to Enterprise features. No credit card required.

    What if You Could Automate 90% of Your Repetitive Tasks in Under 30 Days? At ServoDesk, we help businesses like yours automate operations with AI, allowing you to cut service times in half and increase productivity by 25% - without hiring more staff.
    Try ServoDesk for free
  • 1
    Tongyi DeepResearch

    Tongyi DeepResearch

    Tongyi Deep Research, the Leading Open-source Deep Research Agent

    DeepResearch (Tongyi DeepResearch) is an open-source “deep research agent” developed by Alibaba’s Tongyi Lab designed for long-horizon, information-seeking tasks. It’s built to act like a research agent: synthesizing, reasoning, retrieving information via the web and documents, and backing its outputs with evidence. The model is about 30.5 billion parameters in size, though at any given token only ~3.3B parameters are active. It uses a mix of synthetic data generation, fine-tuning and...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 2
    AReal

    AReal

    Lightning-Fast RL for LLM Reasoning and Agents. Made Simple & Flexible

    ...It is intended to facilitate reproducible RL training on reasoning / agentic tasks, supporting scaling from single nodes to large GPU clusters. It can streamline the development of AI agents and reasoning systems. Support for algorithm and system co-design optimizations (to improve efficiency and stability).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    MiniMax-M1

    MiniMax-M1

    Open-weight, large-scale hybrid-attention reasoning model

    MiniMax-M1 is presented as the world’s first open-weight, large-scale hybrid-attention reasoning model, designed to push the frontier of long-context, tool-using, and deeply “thinking” language models. It is built on the MiniMax-Text-01 foundation and keeps the same massive parameter budget, but reworks the attention and training setup for better reasoning and test-time compute scaling. Architecturally, it combines Mixture-of-Experts layers with lightning attention, enabling the model to...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next