...The repository favors clear Python and NumPy or PyTorch implementations that can be run and modified without heavyweight frameworks obscuring the logic. Chapters and notebooks progress from tiny toy models to more capable transformer stacks, including sampling strategies and evaluation hooks. The focus is on readability, correctness, and experimentation, making it ideal for students and practitioners transitioning from theory to working systems. By the end, you have a grounded sense of how data pipelines, optimization, and inference interact to produce fluent text.