• Auth0 for AI Agents now in GA Icon
    Auth0 for AI Agents now in GA

    Ready to implement AI with confidence (without sacrificing security)?

    Connect your AI agents to apps and data more securely, give users control over the actions AI agents can perform and the data they can access, and enable human confirmation for critical agent actions.
    Start building today
  • Context for your AI agents Icon
    Context for your AI agents

    Crawl websites, sync to vector databases, and power RAG applications. Pre-built integrations for LLM pipelines and AI assistants.

    Build data pipelines that feed your AI models and agents without managing infrastructure. Crawl any website, transform content, and push directly to your preferred vector store. Use 10,000+ tools for RAG applications, AI assistants, and real-time knowledge bases. Monitor site changes, trigger workflows on new data, and keep your AIs fed with fresh, structured information. Cloud-native, API-first, and free to start until you need to scale.
    Try for free
  • 1
    STORM

    STORM

    An LLM-powered knowledge curation system that researches topics

    STORM is an open-source virtual assistant framework developed by Stanford's OVAL lab. It is designed for creating natural language interfaces and assistants that can interact with APIs, databases, and services in a modular way.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 2
    spacy-llm

    spacy-llm

    Integrating LLMs into structured NLP pipelines

    ...With only a few (and sometimes no) examples, an LLM can be prompted to perform custom NLP tasks such as text categorization, named entity recognition, coreference resolution, information extraction and more. This package integrates Large Language Models (LLMs) into spaCy, featuring a modular system for fast prototyping and prompting, and turning unstructured responses into robust outputs for various NLP tasks, no training data required.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 3
    GraphRAG

    GraphRAG

    A modular graph-based Retrieval-Augmented Generation (RAG) system

    The GraphRAG project is a data pipeline and transformation suite that is designed to extract meaningful, structured data from unstructured text using the power of LLMs.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 4
    Evals

    Evals

    Evals is a framework for evaluating LLMs and LLM systems

    ...It also maintains a growing registry of standard benchmarks or “evals” that users can reuse (for example, tasks measuring reasoning, factual accuracy, or chain-of-thought capabilities). The design is modular so you can extend or compose new evals, integrate with your own model APIs, and capture rich metadata about each run (prompt, responses, metrics).
    Downloads: 0 This Week
    Last Update:
    See Project
  • Leverage AI to Automate Medical Coding Icon
    Leverage AI to Automate Medical Coding

    Medical Coding Solution

    As a healthcare provider, you should be paid promptly for the services you provide to patients. Slow, inefficient, and error-prone manual coding keeps you from the financial peace you deserve. XpertDox’s autonomous coding solution accelerates the revenue cycle so you can focus on providing great healthcare.
    Learn More
  • 5
    OpenCompass

    OpenCompass

    OpenCompass is an LLM evaluation platform

    Just like a compass guides us on our journey, OpenCompass will guide you through the complex landscape of evaluating large language models. With its powerful algorithms and intuitive interface, OpenCompass makes it easy to assess the quality and effectiveness of your NLP models. OpenCompass is a one-stop platform for large model evaluation, aiming to provide a fair, open, and reproducible benchmark for large model evaluation. Pre-support for 20+ HuggingFace and API models, a model evaluation...
    Downloads: 9 This Week
    Last Update:
    See Project
  • 6
    Unstructured.IO

    Unstructured.IO

    Open source libraries and APIs to build custom preprocessing pipelines

    The unstructured library provides open-source components for ingesting and pre-processing images and text documents, such as PDFs, HTML, Word docs, and many more. The use cases of unstructured revolve around streamlining and optimizing the data processing workflow for LLMs. unstructured modular bricks and connectors form a cohesive system that simplifies data ingestion and pre-processing, making it adaptable to different platforms and is efficient in transforming unstructured data into structured outputs.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 7
    Coconut

    Coconut

    Training Large Language Model to Reason in a Continuous Latent Space

    Coconut is the official PyTorch implementation of the research paper “Training Large Language Models to Reason in a Continuous Latent Space.” The framework introduces a novel method for enhancing large language models (LLMs) with continuous latent reasoning steps, enabling them to generate and refine reasoning chains within a learned latent space rather than relying solely on discrete symbolic reasoning. It supports training across multiple reasoning paradigms—including standard...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 8
    Ludwig AI

    Ludwig AI

    Low-code framework for building custom LLMs, neural networks

    Declarative deep learning framework built for scale and efficiency. Ludwig is a low-code framework for building custom AI models like LLMs and other deep neural networks. Declarative YAML configuration file is all you need to train a state-of-the-art LLM on your data. Support for multi-task and multi-modality learning. Comprehensive config validation detects invalid parameter combinations and prevents runtime failures. Automatic batch size selection, distributed training (DDP, DeepSpeed),...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 9
    NeMo Curator

    NeMo Curator

    Scalable data pre processing and curation toolkit for LLMs

    NeMo Curator is a Python library specifically designed for fast and scalable dataset preparation and curation for large language model (LLM) use-cases such as foundation model pretraining, domain-adaptive pretraining (DAPT), supervised fine-tuning (SFT) and paramter-efficient fine-tuning (PEFT). It greatly accelerates data curation by leveraging GPUs with Dask and RAPIDS, resulting in significant time savings. The library provides a customizable and modular interface, simplifying pipeline expansion and accelerating model convergence through the preparation of high-quality tokens. At the core of the NeMo Curator is the DocumentDataset which serves as the the main dataset class. It acts as a straightforward wrapper around a Dask DataFrame. The Python library offers easy-to-use methods for expanding the functionality of your curation pipeline while eliminating scalability concerns.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Nonprofit Budgeting Software Icon
    Nonprofit Budgeting Software

    Martus Solutions provides seamless budgeting, reporting, and forecasting tools that integrate with accounting systems for real-time financial insights

    Martus' collaborative and easy-to-use budgeting and reporting platform will save you hundreds of hours each year. It's designed to make the entire budgeting process easier and create unlimited financial transparency.
    Learn More
  • 10
    Ring

    Ring

    Ring is a reasoning MoE LLM provided and open-sourced by InclusionAI

    Ring is a reasoning Mixture-of-Experts (MoE) large language model (LLM) developed by inclusionAI. It is built from or derived from Ling. Its design emphasizes reasoning, efficiency, and modular expert activation. In its “flash” variant (Ring-flash-2.0), it optimizes inference by activating only a subset of experts. It applies reinforcement learning/reasoning optimization techniques. Its architectures and training approaches are tuned to enable efficient and capable reasoning performance. Reasoning-optimized model with reinforcement learning enhancements. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    BERTopic

    BERTopic

    Leveraging BERT and c-TF-IDF to create easily interpretable topics

    BERTopic is a topic modeling technique that leverages transformers and c-TF-IDF to create dense clusters allowing for easily interpretable topics whilst keeping important words in the topic descriptions. BERTopic supports guided, supervised, semi-supervised, manual, long-document, hierarchical, class-based, dynamic, and online topic modeling. It even supports visualizations similar to LDAvis! Corresponding medium posts can be found here, here and here. For a more detailed overview, you can...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Controllable-RAG-Agent

    Controllable-RAG-Agent

    This repository provides an advanced RAG

    Controllable-RAG-Agent is an advanced Retrieval-Augmented Generation (RAG) system designed specifically for complex, multi-step question answering over your own documents. Instead of relying solely on simple semantic search, it builds a deterministic control graph that acts as the “brain” of the agent, orchestrating planning, retrieval, reasoning, and verification across many steps. The pipeline ingests PDFs, splits them into chapters, cleans and preprocesses text, then constructs vector...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Grok-1

    Grok-1

    Open-source, high-performance Mixture-of-Experts large language model

    Grok-1 is a 314-billion-parameter Mixture-of-Experts (MoE) large language model developed by xAI. Designed to optimize computational efficiency, it activates only 25% of its weights for each input token. In March 2024, xAI released Grok-1's model weights and architecture under the Apache 2.0 license, making them openly accessible to developers. The accompanying GitHub repository provides JAX example code for loading and running the model. Due to its substantial size, utilizing Grok-1...
    Downloads: 27 This Week
    Last Update:
    See Project
  • 14
    Doctor Dignity

    Doctor Dignity

    Doctor Dignity is an LLM that can pass the US Medical Licensing Exam

    Doctor Dignity is a prototype project exploring how AI-assisted tooling might support compassionate, accessible health guidance for people who struggle to get timely care. The repository centers on a simple end-to-end pipeline—intake of user-reported symptoms, basic triage logic, and clear, supportive messaging—intended to demonstrate how such systems could be built. It emphasizes a humane UX: plain-language prompts, de-jargonized outputs, and guardrails that nudge users toward professional...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next