...Instead of relying purely on manual, ad hoc interpretability probing, this repo aims to scale interpretability by using algorithmic methods that produce candidate explanations and assess their quality. It includes a “neuron explainer” component that, given a target neuron or latent feature, proposes natural language explanations or heuristics (e.g. “this neuron activates when the input has property X”) and then simulates activation behavior across example inputs to test whether the explanation holds. The project also contains a “neuron viewer” web component for browsing neurons, explanations, and activation patterns, making it more interactive and exploratory.