Showing 58 open source projects for "code::block"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Outgrown Windows Task Scheduler? Icon
    Outgrown Windows Task Scheduler?

    Free diagnostic identifies where your workflow is breaking down—with instant analysis of your scheduling environment.

    Windows Task Scheduler wasn't built for complex, cross-platform automation. Get a free diagnostic that shows exactly where things are failing and provides remediation recommendations. Interactive HTML report delivered in minutes.
    Download Free Tool
  • 1
    Code World Model (CWM)

    Code World Model (CWM)

    Research code artifacts for Code World Model (CWM)

    ...The repository provides inference code, reproducibility scripts, prompt guides, and more. It has model cards, utilities, demos, and evaluation artifacts. Inference scripts and utilities for code generation tasks. Evaluation benchmarks on code, mathematics, and reasoning tasks. Demos, serving code, and evaluation pipelines.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    CodeGeeX

    CodeGeeX

    CodeGeeX: An Open Multilingual Code Generation Model (KDD 2023)

    CodeGeeX is a large-scale multilingual code generation model with 13 billion parameters, trained on 850B tokens across more than 20 programming languages. Developed with MindSpore and later made PyTorch-compatible, it is capable of multilingual code generation, cross-lingual code translation, code completion, summarization, and explanation. It has been benchmarked on HumanEval-X, a multilingual program synthesis benchmark introduced alongside the model, and achieves state-of-the-art performance compared to other open models like InCoder and CodeGen. ...
    Downloads: 11 This Week
    Last Update:
    See Project
  • 3
    GLM-4.6

    GLM-4.6

    Agentic, Reasoning, and Coding (ARC) foundation models

    ...It introduces an extended 200K token context window, enabling more sophisticated long-context reasoning and agentic workflows. The model achieves superior coding performance, excelling in benchmarks and practical coding assistants such as Claude Code, Cline, Roo Code, and Kilo Code. Its reasoning capabilities have been strengthened, including improved tool usage during inference and more effective integration within agent frameworks. GLM-4.6 also enhances writing quality, producing outputs that better align with human preferences and role-playing scenarios. Benchmark evaluations demonstrate that it not only outperforms GLM-4.5 but also rivals leading global models such as DeepSeek-V3.1-Terminus and Claude Sonnet 4.
    Downloads: 118 This Week
    Last Update:
    See Project
  • 4
    GLM-4.7

    GLM-4.7

    Advanced language and coding AI model

    ...It delivers significant gains over GLM-4.6 in multilingual agentic coding, terminal-based workflows, and real-world developer benchmarks such as SWE-bench and Terminal Bench 2.0. The model introduces stronger “thinking before acting” behavior, improving stability and accuracy in complex agent frameworks like Claude Code, Cline, and Roo Code. GLM-4.7 also advances “vibe coding,” producing cleaner, more modern UIs, better-structured webpages, and visually improved slide layouts. Its tool-use capabilities are substantially enhanced, with notable improvements in browsing, search, and tool-integrated reasoning tasks. Overall, GLM-4.7 shows broad performance upgrades across coding, reasoning, chat, creative writing, and role-play scenarios.
    Downloads: 332 This Week
    Last Update:
    See Project
  • AI-generated apps that pass security review Icon
    AI-generated apps that pass security review

    Stop waiting on engineering. Build production-ready internal tools with AI—on your company data, in your cloud.

    Retool lets you generate dashboards, admin panels, and workflows directly on your data. Type something like “Build me a revenue dashboard on my Stripe data” and get a working app with security, permissions, and compliance built in from day one. Whether on our cloud or self-hosted, create the internal software your team needs without compromising enterprise standards or control.
    Try Retool free
  • 5
    Qwen3-Coder

    Qwen3-Coder

    Qwen3-Coder is the code version of Qwen3

    ...Qwen3-Coder supports an exceptionally long context window of 256,000 tokens, extendable to 1 million tokens using Yarn, enabling repository-scale code understanding and generation. It is capable of handling 358 programming languages, from common to niche, making it versatile for a wide range of development environments. The model integrates a specially designed function call format and supports popular platforms such as Qwen Code and CLINE for agentic coding workflows.
    Downloads: 29 This Week
    Last Update:
    See Project
  • 6
    HumanEval

    HumanEval

    Code for the paper "Evaluating Large Language Models Trained on Code"

    human-eval is a benchmark dataset and evaluation framework created by OpenAI for measuring the ability of language models to generate correct code. It consists of hand-written programming problems with unit tests, designed to assess functional correctness rather than superficial metrics like text similarity. Each task includes a natural language prompt and a function signature, requiring the model to generate an implementation that passes all provided tests. The benchmark has become a standard for evaluating code generation models, including those in the Codex and GPT families. ...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 7
    CodeGeeX2

    CodeGeeX2

    CodeGeeX2: A More Powerful Multilingual Code Generation Model

    CodeGeeX2 is the second-generation multilingual code generation model from ZhipuAI, built upon the ChatGLM2-6B architecture and trained on 600B code tokens. Compared to the first generation, it delivers a significant boost in programming ability across multiple languages, outperforming even larger models like StarCoder-15B in some benchmarks despite having only 6B parameters. The model excels at code generation, translation, summarization, debugging, and comment generation, and it supports over 100 programming languages. ...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 8
    Qwen

    Qwen

    The official repo of Qwen chat & pretrained large language model

    ...These models, which range from smaller to larger configurations, are designed for a wide range of natural language processing tasks. They are openly available for research and commercial use, with Qwen's code and model weights shared on GitHub. Qwen's capabilities include text generation, comprehension, and conversation, making it a versatile tool for developers looking to integrate advanced AI functionalities into their applications.
    Downloads: 23 This Week
    Last Update:
    See Project
  • 9
    CodeLlama

    CodeLlama

    Inference code for CodeLlama models

    Code Llama is a family of Llama-based code models optimized for programming tasks such as code generation, completion, and repair, with variants specialized for base coding, Python, and instruction following. The repo documents the sizes and capabilities (e.g., 7B, 13B, 34B) and highlights features like infilling and large input context to support real IDE workflows.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • 10
    LLM Action

    LLM Action

    Technical principles related to large models

    ...It organizes content in domains like training, inference, compression, alignment, evaluation, pipelines, and applications. Sections covering infrastructure, engineering, and deployment. Repository templates, sample code, and resource links. Articles/code on LLM compression (quantization, pruning).
    Downloads: 1 This Week
    Last Update:
    See Project
  • 11
    Qwen3

    Qwen3

    Qwen3 is the large language model series developed by Qwen team

    Qwen3 is a cutting-edge large language model (LLM) series developed by the Qwen team at Alibaba Cloud. The latest updated version, Qwen3-235B-A22B-Instruct-2507, features significant improvements in instruction-following, reasoning, knowledge coverage, and long-context understanding up to 256K tokens. It delivers higher quality and more helpful text generation across multiple languages and domains, including mathematics, coding, science, and tool usage. Various quantized versions,...
    Downloads: 66 This Week
    Last Update:
    See Project
  • 12
    GLM-4.5

    GLM-4.5

    GLM-4.5: Open-source LLM for intelligent agents by Z.ai

    GLM-4.5 is a cutting-edge open-source large language model designed by Z.ai for intelligent agent applications. The flagship GLM-4.5 model has 355 billion total parameters with 32 billion active parameters, while the compact GLM-4.5-Air version offers 106 billion total parameters and 12 billion active parameters. Both models unify reasoning, coding, and intelligent agent capabilities, providing two modes: a thinking mode for complex reasoning and tool usage, and a non-thinking mode for...
    Downloads: 80 This Week
    Last Update:
    See Project
  • 13
    ChatGLM3

    ChatGLM3

    ChatGLM3 series: Open Bilingual Chat LLMs | Open Source Bilingual Chat

    ChatGLM3 is ZhipuAI & Tsinghua KEG’s third-gen conversational model suite centered on the 6B-parameter ChatGLM3-6B. It keeps the series’ smooth dialog and low deployment cost while adding native tool use (function calling), a built-in code interpreter, and agent-style workflows. The family includes base and long-context variants (8K/32K/128K). The repo ships Python APIs, CLI and web demos (Gradio/Streamlit), an OpenAI-format API server, and a compact fine-tuning kit. Quantization (4/8-bit), CPU/MPS support, and accelerator backends (TensorRT-LLM, OpenVINO, chatglm.cpp) enable lightweight local or edge deployment.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 14
    GLM-4

    GLM-4

    GLM-4 series: Open Multilingual Multimodal Chat LMs

    GLM-4 is a family of open models from ZhipuAI that spans base, chat, and reasoning variants at both 32B and 9B scales, with long-context support and practical local-deployment options. The GLM-4-32B-0414 models are trained on ~15T high-quality data (including substantial synthetic reasoning data), then post-trained with preference alignment, rejection sampling, and reinforcement learning to improve instruction following, coding, function calling, and agent-style behaviors. The...
    Downloads: 6 This Week
    Last Update:
    See Project
  • 15
    LLaMA 3

    LLaMA 3

    The official Meta Llama 3 GitHub site

    ...Even as a deprecated repo, it documents the transition path and preserves references that clarify how Llama 3 releases map into the current ecosystem. Practically, it functioned as a bridge between Llama 2 and later Llama releases by standardizing distribution and starter code for inference and fine-tuning. Teams still treat it as historical reference material for version lineage and migration notes.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    LLM Foundry

    LLM Foundry

    LLM training code for MosaicML foundation models

    Introducing MPT-7B, the first entry in our MosaicML Foundation Series. MPT-7B is a transformer trained from scratch on 1T tokens of text and code. It is open source, available for commercial use, and matches the quality of LLaMA-7B. MPT-7B was trained on the MosaicML platform in 9.5 days with zero human intervention at a cost of ~$200k. Large language models (LLMs) are changing the world, but for those outside well-resourced industry labs, it can be extremely difficult to train and deploy these models. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    VibeThinker

    VibeThinker

    Diversity-driven optimization and large-model reasoning ability

    VibeThinker is a compact but high-capability open-source language model released by WeiboAI (Sina AI Lab). It contains about 1.5 billion parameters, far smaller than many “frontier” models, yet it is explicitly optimized for reasoning, mathematics, and code generation tasks rather than general open-domain chat. The innovation lies in its training methodology: the team uses what they call the Spectrum-to-Signal Principle (SSP), where a first stage emphasizes diversity of reasoning paths (the “spectrum” phase) and a second stage uses reinforcement techniques (the “signal” phase) to refine toward correctness and strong reasoning. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    SimpleLLM

    SimpleLLM

    950 line, minimal, extensible LLM inference engine built from scratch

    SimpleLLM is a minimal, extensible large language model inference engine implemented in roughly 950 lines of code, built from scratch to serve both as a learning tool and a research platform for novel inference techniques. It provides the core components of an LLM runtime—such as tokenization, batching, and asynchronous execution—without the abstraction overhead of more complex engines, making it easier for developers and researchers to understand and modify.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    H2O LLM Studio

    H2O LLM Studio

    Framework and no-code GUI for fine-tuning LLMs

    Welcome to H2O LLM Studio, a framework and no-code GUI designed for fine-tuning state-of-the-art large language models (LLMs). You can also use H2O LLM Studio with the command line interface (CLI) and specify the configuration file that contains all the experiment parameters. To finetune using H2O LLM Studio with CLI, activate the pipenv environment by running make shell. With H2O LLM Studio, training your large language model is easy and intuitive.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 20
    Ling

    Ling

    Ling is a MoE LLM provided and open-sourced by InclusionAI

    ...As more developers and researchers engage with the platform, we can expect rapid advancements and improvements, leading to even more sophisticated applications. Model inference and API code (e.g. integration with Transformers). This collaborative approach accelerates development and ensures that the models remain at the forefront of technology, addressing emerging challenges in various fields.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    PandasAI

    PandasAI

    PandasAI is a Python library that integrates generative AI

    PandasAI is a Python library that adds Generative AI capabilities to pandas, the popular data analysis and manipulation tool. It is designed to be used in conjunction with pandas, and is not a replacement for it. PandasAI makes pandas (and all the most used data analyst libraries) conversational, allowing you to ask questions to your data in natural language. For example, you can ask PandasAI to find all the rows in a DataFrame where the value of a column is greater than 5, and it will...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Ludwig AI

    Ludwig AI

    Low-code framework for building custom LLMs, neural networks

    Declarative deep learning framework built for scale and efficiency. Ludwig is a low-code framework for building custom AI models like LLMs and other deep neural networks. Declarative YAML configuration file is all you need to train a state-of-the-art LLM on your data. Support for multi-task and multi-modality learning. Comprehensive config validation detects invalid parameter combinations and prevents runtime failures.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    ChatGLM-6B

    ChatGLM-6B

    ChatGLM-6B: An Open Bilingual Dialogue Language Model

    ChatGLM-6B is an open bilingual (Chinese + English) conversational language model based on the GLM architecture, with approximately 6.2 billion parameters. The project provides inference code, demos (command line, web, API), quantization support for lower memory deployment, and tools for finetuning (e.g., via P-Tuning v2). It is optimized for dialogue and question answering with a balance between performance and deployability in consumer hardware settings. Support for quantized inference (INT4, INT8) to reduce GPU memory requirements. ...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 24
    MGIE

    MGIE

    Guiding Instruction-based Image Editing via Multimodal Large Language

    ...The project focuses on making edits explainable and controllable: the model interprets text guidance, reasons over image content, and outputs edits aligned with user intent. It’s positioned as an ICLR 2024 Spotlight work, with code and references that show how to connect language planning to concrete image operations. This bridges a gap between free-form prompts and precise edits by letting users describe “what” and “where” in everyday language. The repo includes instructions, examples, and links that situate MGIE within Apple’s broader line of multimodal research. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    OSS-Fuzz Gen

    OSS-Fuzz Gen

    LLM powered fuzzing via OSS-Fuzz

    OSS-Fuzz-Gen is a companion project that helps automatically create or improve fuzz targets for open-source codebases, aiming to increase coverage in OSS-Fuzz with minimal maintainer effort. It analyses a library’s APIs, examples, and tests to propose harnesses that exercise parsers, decoders, or protocol handlers—precisely the code where fuzzing pays off. The system integrates with modern LLM-assisted workflows to draft harness code and then iterates based on build errors or low coverage signals. Importantly, it aligns with OSS-Fuzz conventions, generating corpus seeds, build rules, and sanitizer settings so projects can plug in quickly. Reports highlight what functions were targeted, how coverage evolved, and where manual hints could unlock more paths. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • Next