Showing 165 open source projects for "linux is"

View related business solutions
  • Context for your AI agents Icon
    Context for your AI agents

    Crawl websites, sync to vector databases, and power RAG applications. Pre-built integrations for LLM pipelines and AI assistants.

    Build data pipelines that feed your AI models and agents without managing infrastructure. Crawl any website, transform content, and push directly to your preferred vector store. Use 10,000+ tools for RAG applications, AI assistants, and real-time knowledge bases. Monitor site changes, trigger workflows on new data, and keep your AIs fed with fresh, structured information. Cloud-native, API-first, and free to start until you need to scale.
    Try for free
  • Next-Gen Encryption for Post-Quantum Security | CLEAR by Quantum Knight Icon
    Next-Gen Encryption for Post-Quantum Security | CLEAR by Quantum Knight

    Lock Down Any Resource, Anywhere, Anytime

    CLEAR by Quantum Knight is a FIPS-140-3 validated encryption SDK engineered for enterprises requiring top-tier security. Offering robust post-quantum cryptography, CLEAR secures files, streaming media, databases, and networks with ease across over 30 modern platforms. Its compact design, smaller than a single smartphone image, ensures maximum efficiency and low energy consumption.
    Learn More
  • 1
    Phi-3-MLX

    Phi-3-MLX

    Phi-3.5 for Mac: Locally-run Vision and Language Models

    Phi-3-Vision-MLX is an Apple MLX (machine learning on Apple silicon) implementation of Phi-3 Vision, a lightweight multi-modal model designed for vision and language tasks. It focuses on running vision-language AI efficiently on Apple hardware like M1 and M2 chips.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    DB-GPT

    DB-GPT

    Revolutionizing Database Interactions with Private LLM Technology

    DB-GPT is an experimental open-source project that uses localized GPT large models to interact with your data and environment. With this solution, you can be assured that there is no risk of data leakage, and your data is 100% private and secure.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Curated Transformers

    Curated Transformers

    PyTorch library of curated Transformer models and their components

    State-of-the-art transformers, brick by brick. Curated Transformers is a transformer library for PyTorch. It provides state-of-the-art models that are composed of a set of reusable components. Supports state-of-the-art transformer models, including LLMs such as Falcon, Llama, and Dolly v2. Implementing a feature or bugfix benefits all models. For example, all models support 4/8-bit inference through the bitsandbytes library and each model can use the PyTorch meta device to avoid unnecessary...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Guardrails

    Guardrails

    Adding guardrails to large language models

    Guardrails is a Python package that lets a user add structure, type and quality guarantees to the outputs of large language models (LLMs). At the heart of Guardrails is the rail spec. rail is intended to be a language-agnostic, human-readable format for specifying structure and type information, validators and corrective actions over LLM outputs. We create a RAIL spec to describe the expected structure and types of the LLM output, the quality criteria for the output to be considered valid,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Financial reporting cloud-based software. Icon
    Financial reporting cloud-based software.

    For companies looking to automate their consolidation and financial statement function

    The software is cloud based and automates complexities around consolidating and reporting for groups with multiple year ends, currencies and ERP systems with a slice and dice approach to reporting. While retaining the structure, control and validation needed in a financial reporting tool, we’ve managed to keep things flexible.
    Learn More
  • 5
    llm.c

    llm.c

    LLM training in simple, raw C/CUDA

    llm.c is a minimalist, systems-level implementation of a small transformer-based language model in C that prioritizes clarity and educational value. By stripping away heavy frameworks, it exposes the core math and memory flows of embeddings, attention, and feed-forward layers. The code illustrates how to wire forward passes, losses, and simple training or inference loops with direct control over arrays and buffers. Its compact design makes it easy to trace execution, profile hotspots, and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Coconut

    Coconut

    Training Large Language Model to Reason in a Continuous Latent Space

    Coconut is the official PyTorch implementation of the research paper “Training Large Language Models to Reason in a Continuous Latent Space.” The framework introduces a novel method for enhancing large language models (LLMs) with continuous latent reasoning steps, enabling them to generate and refine reasoning chains within a learned latent space rather than relying solely on discrete symbolic reasoning. It supports training across multiple reasoning paradigms—including standard...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Ling

    Ling

    Ling is a MoE LLM provided and open-sourced by InclusionAI

    Ling is a Mixture-of-Experts (MoE) large language model (LLM) provided and open-sourced by inclusionAI. The project offers different sizes (Ling-lite, Ling-plus) and emphasizes flexibility and efficiency: being able to scale, adapt expert activation, and perform across a range of natural language/reasoning tasks. Example scripts, inference pipelines, and documentation. The codebase includes inference, examples, models, documentation, and model download infrastructure. As more developers and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Streamline Analyst

    Streamline Analyst

    AI agent that streamlines the entire process of data analysis

    Streamline Analyst is a cutting-edge, open-source application powered by Large Language Models (LLMs) designed to revolutionize data analysis. This Data Analysis Agent effortlessly automates all the tasks such as data cleaning, preprocessing, and even complex operations like identifying target objects, partitioning test sets, and selecting the best-fit models based on your data. With Streamline Analyst, results visualization and evaluation become seamless.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    NeMo Curator

    NeMo Curator

    Scalable data pre processing and curation toolkit for LLMs

    NeMo Curator is a Python library specifically designed for fast and scalable dataset preparation and curation for large language model (LLM) use-cases such as foundation model pretraining, domain-adaptive pretraining (DAPT), supervised fine-tuning (SFT) and paramter-efficient fine-tuning (PEFT). It greatly accelerates data curation by leveraging GPUs with Dask and RAPIDS, resulting in significant time savings. The library provides a customizable and modular interface, simplifying pipeline...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Say goodbye to broken revenue funnels and poor customer experiences Icon
    Say goodbye to broken revenue funnels and poor customer experiences

    Connect and coordinate your data, signals, tools, and people at every step of the customer journey.

    LeanData is a Demand Management solution that supports all go-to-market strategies such as account-based sales development, geo-based territories, and more. LeanData features a visual, intuitive workflow native to Salesforce that enables users to view their entire lead flow in one interface. LeanData allows users to access the drag-and-drop feature to route their leads. LeanData also features an algorithms match that uses multiple fields in Salesforce.
    Learn More
  • 10
    Mosec

    Mosec

    A high-performance ML model serving framework, offers dynamic batching

    Mosec is a high-performance and flexible model-serving framework for building ML model-enabled backend and microservices. It bridges the gap between any machine learning models you just trained and the efficient online service API.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    OpenDAN

    OpenDAN

    OpenDAN is an open source Personal AI OS

    OpenDAN is an open-source Personal AI OS , that consolidates various AI modules in one place for your personal use. The goal of OpenDAN (Open and Do Anything Now with AI) is to create a Personal AI OS , which provides a runtime environment for various Al modules as well as protocols for interoperability between them. With OpenDAN, users can securely collaborate with various AI modules using their private data to create powerful personal AI agents, such as butlers, lawyers, doctors, teachers,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Ludwig AI

    Ludwig AI

    Low-code framework for building custom LLMs, neural networks

    Declarative deep learning framework built for scale and efficiency. Ludwig is a low-code framework for building custom AI models like LLMs and other deep neural networks. Declarative YAML configuration file is all you need to train a state-of-the-art LLM on your data. Support for multi-task and multi-modality learning. Comprehensive config validation detects invalid parameter combinations and prevents runtime failures. Automatic batch size selection, distributed training (DDP, DeepSpeed),...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    BertViz

    BertViz

    BertViz: Visualize Attention in NLP Models (BERT, GPT2, BART, etc.)

    BertViz is an interactive tool for visualizing attention in Transformer language models such as BERT, GPT2, or T5. It can be run inside a Jupyter or Colab notebook through a simple Python API that supports most Huggingface models. BertViz extends the Tensor2Tensor visualization tool by Llion Jones, providing multiple views that each offer a unique lens into the attention mechanism. The head view visualizes attention for one or more attention heads in the same layer. It is based on the...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Kaleidoscope-SDK

    Kaleidoscope-SDK

    User toolkit for analyzing and interfacing with Large Language Models

    kaleidoscope-sdk is a Python module used to interact with large language models hosted via the Kaleidoscope service available at: https://github.com/VectorInstitute/kaleidoscope. It provides a simple interface to launch LLMs on an HPC cluster, asking them to perform basic features like text generation, but also retrieve intermediate information from inside the model, such as log probabilities and activations. Users must authenticate using their Vector Institute cluster credentials. This can...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Advanced RAG Techniques

    Advanced RAG Techniques

    Advanced techniques for RAG systems

    Advanced RAG Techniques is a comprehensive collection of tutorials and implementations focused on advanced Retrieval-Augmented Generation (RAG) systems. It is designed to help practitioners move beyond basic RAG setups and explore techniques that improve retrieval quality, context construction, and answer robustness. The repository organizes techniques into categories such as foundational RAG, query enhancement, context enrichment, and advanced retrieval, making it easier to navigate...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    LLMs-from-scratch

    LLMs-from-scratch

    Implement a ChatGPT-like LLM in PyTorch from scratch, step by step

    LLMs-from-scratch is an educational codebase that walks through implementing modern large-language-model components step by step. It emphasizes building blocks—tokenization, embeddings, attention, feed-forward layers, normalization, and training loops—so learners understand not just how to use a model but how it works internally. The repository favors clear Python and NumPy or PyTorch implementations that can be run and modified without heavyweight frameworks obscuring the logic. Chapters...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    MGIE

    MGIE

    Guiding Instruction-based Image Editing via Multimodal Large Language

    MGIE—Guiding Instruction-based Image Editing—demonstrates how a multimodal LLM can parse natural-language editing instructions and then drive image transformations accordingly. The project focuses on making edits explainable and controllable: the model interprets text guidance, reasons over image content, and outputs edits aligned with user intent. It’s positioned as an ICLR 2024 Spotlight work, with code and references that show how to connect language planning to concrete image operations....
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    ML Ferret

    ML Ferret

    Refer and Ground Anything Anywhere at Any Granularity

    Ferret is Apple’s end-to-end multimodal large language model designed specifically for flexible referring and grounding: it can understand references of any granularity (boxes, points, free-form regions) and then ground open-vocabulary descriptions back onto the image. The core idea is a hybrid region representation that mixes discrete coordinates with continuous visual features, so the model can fluidly handle “any-form” referring while maintaining precise spatial localization. The repo...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    LLaMA 3

    LLaMA 3

    The official Meta Llama 3 GitHub site

    This repository is the former home for Llama 3 model artifacts and getting-started code, covering pre-trained and instruction-tuned variants across multiple parameter sizes. It introduced the public packaging of weights, licenses, and quickstart examples that helped developers fine-tune or run the models locally and on common serving stacks. As the Llama stack evolved, Meta consolidated repositories and marked this one deprecated, pointing users to newer, centralized hubs for models,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    CodeLlama

    CodeLlama

    Inference code for CodeLlama models

    Code Llama is a family of Llama-based code models optimized for programming tasks such as code generation, completion, and repair, with variants specialized for base coding, Python, and instruction following. The repo documents the sizes and capabilities (e.g., 7B, 13B, 34B) and highlights features like infilling and large input context to support real IDE workflows. It targets both general software synthesis and language-specific productivity, offering strong performance among open models...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    LLaMA Models

    LLaMA Models

    Utilities intended for use with Llama models

    This repository serves as the central hub for the Llama foundation model family, consolidating model cards, licenses and use policies, and utilities that support inference and fine-tuning across releases. It ties together other stack components (like safety tooling and developer SDKs) and provides canonical references for model variants and their intended usage. The project’s issues and releases reflect an actively used coordination point for the ecosystem, where guidance, utilities, and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Purple Llama

    Purple Llama

    Set of tools to assess and improve LLM security

    Purple Llama is an umbrella safety initiative that aggregates tools, benchmarks, and mitigations to help developers build responsibly with open generative AI. Its scope spans input and output safeguards, cybersecurity-focused evaluations, and reference shields that can be inserted at inference time. The project evolves as a hub for safety research artifacts like Llama Guard and Code Shield, along with dataset specs and how-to guides for integrating checks into applications. CyberSecEval, one...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    MobileLLM

    MobileLLM

    MobileLLM Optimizing Sub-billion Parameter Language Models

    MobileLLM is a lightweight large language model (LLM) framework developed by Facebook Research, optimized for on-device deployment where computational and memory efficiency are critical. Introduced in the ICML 2024 paper “MobileLLM: Optimizing Sub-billion Parameter Language Models for On-Device Use Cases”, it focuses on delivering strong reasoning and generalization capabilities in models under one billion parameters. The framework integrates several architectural innovations—SwiGLU...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    GLM-4-Voice

    GLM-4-Voice

    GLM-4-Voice | End-to-End Chinese-English Conversational Model

    GLM-4-Voice is an open-source speech-enabled model from ZhipuAI, extending the GLM-4 family into the audio domain. It integrates advanced voice recognition and generation with the multimodal reasoning capabilities of GLM-4, enabling smooth natural interaction via spoken input and output. The model supports real-time speech-to-text transcription, spoken dialogue understanding, and text-to-speech synthesis, making it suitable for conversational AI, virtual assistants, and accessibility...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Ring

    Ring

    Ring is a reasoning MoE LLM provided and open-sourced by InclusionAI

    Ring is a reasoning Mixture-of-Experts (MoE) large language model (LLM) developed by inclusionAI. It is built from or derived from Ling. Its design emphasizes reasoning, efficiency, and modular expert activation. In its “flash” variant (Ring-flash-2.0), it optimizes inference by activating only a subset of experts. It applies reinforcement learning/reasoning optimization techniques. Its architectures and training approaches are tuned to enable efficient and capable reasoning performance....
    Downloads: 0 This Week
    Last Update:
    See Project