Open Source Mobile Operating Systems Large Language Models (LLM)

Large Language Models (LLM) for Mobile Operating Systems

Browse free open source Large Language Models (LLM) and projects for Mobile Operating Systems below. Use the toggles on the left to filter open source Large Language Models (LLM) by OS, license, language, programming language, and project status.

  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • Get the most trusted enterprise browser Icon
    Get the most trusted enterprise browser

    Advanced built-in security helps IT prevent breaches before they happen

    Defend against security incidents with Chrome Enterprise. Create customizable controls, manage extensions and set proactive alerts to keep your data and employees protected without slowing down productivity.
    Download Chrome
  • 1
    DeepSeek R1

    DeepSeek R1

    Open-source, high-performance AI model with advanced reasoning

    DeepSeek-R1 is an open-source large language model developed by DeepSeek, designed to excel in complex reasoning tasks across domains such as mathematics, coding, and language. DeepSeek R1 offers unrestricted access for both commercial and academic use. The model employs a Mixture of Experts (MoE) architecture, comprising 671 billion total parameters with 37 billion active parameters per token, and supports a context length of up to 128,000 tokens. DeepSeek-R1's training regimen uniquely integrates large-scale reinforcement learning (RL) without relying on supervised fine-tuning, enabling the model to develop advanced reasoning capabilities. This approach has resulted in performance comparable to leading models like OpenAI's o1, while maintaining cost-efficiency. To further support the research community, DeepSeek has released distilled versions of the model based on architectures such as LLaMA and Qwen.
    Downloads: 46 This Week
    Last Update:
    See Project
  • 2
    DeepSeek-V3

    DeepSeek-V3

    Powerful AI language model (MoE) optimized for efficiency/performance

    DeepSeek-V3 is a robust Mixture-of-Experts (MoE) language model developed by DeepSeek, featuring a total of 671 billion parameters, with 37 billion activated per token. It employs Multi-head Latent Attention (MLA) and the DeepSeekMoE architecture to enhance computational efficiency. The model introduces an auxiliary-loss-free load balancing strategy and a multi-token prediction training objective to boost performance. Trained on 14.8 trillion diverse, high-quality tokens, DeepSeek-V3 underwent supervised fine-tuning and reinforcement learning to fully realize its capabilities. Evaluations indicate that it outperforms other open-source models and rivals leading closed-source models, achieving this with a training duration of 55 days on 2,048 Nvidia H800 GPUs, costing approximately $5.58 million.
    Downloads: 22 This Week
    Last Update:
    See Project
  • 3
    Alpaca.cpp

    Alpaca.cpp

    Locally run an Instruction-Tuned Chat-Style LLM

    Run a fast ChatGPT-like model locally on your device. This combines the LLaMA foundation model with an open reproduction of Stanford Alpaca a fine-tuning of the base model to obey instructions (akin to the RLHF used to train ChatGPT) and a set of modifications to llama.cpp to add a chat interface. Download the zip file corresponding to your operating system from the latest release. The weights are based on the published fine-tunes from alpaca-lora, converted back into a PyTorch checkpoint with a modified script and then quantized with llama.cpp the regular way.
    Downloads: 9 This Week
    Last Update:
    See Project
  • 4
    RWKV Runner

    RWKV Runner

    A RWKV management and startup tool, full automation, only 8MB

    RWKV (pronounced as RwaKuv) is an RNN with GPT-level LLM performance, which can also be directly trained like a GPT transformer (parallelizable). So it's combining the best of RNN and transformer - great performance, fast inference, fast training, saves VRAM, "infinite" ctxlen, and free text embedding. Moreover it's 100% attention-free. Default configs has enabled custom CUDA kernel acceleration, which is much faster and consumes much less VRAM. If you encounter possible compatibility issues, go to the Configs page and turn off Use Custom CUDA kernel to Accelerate.
    Downloads: 7 This Week
    Last Update:
    See Project
  • Build Securely on AWS with Proven Frameworks Icon
    Build Securely on AWS with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 5
    fullmoon

    fullmoon

    Chat with private and local large language models

    Fullmoon is a free, open-source application that enables users to interact with large language models directly on their devices, ensuring privacy and offline accessibility. Optimized for Apple silicon, it operates seamlessly across iOS, iPadOS, macOS, and visionOS platforms. Users can personalize the app by adjusting themes, fonts, and system prompts, and it integrates with Apple's Shortcuts for enhanced functionality. Fullmoon supports models like Llama-3.2-1B-Instruct-4bit and Llama-3.2-3B-Instruct-4bit, facilitating efficient on-device AI interactions without the need for an internet connection.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 6
    Aidea

    Aidea

    Flutter-based cross-platform app integrating major AI models

    AIdea is a comprehensive Flutter-based cross-platform app integrating major AI models—OpenAI GPT, Chinese models Tongyi Qianwen and Wenxin Yiyan, plus image models like Stable Diffusion for text-to-image, image-to-image, SDXL 1.0, super-resolution, and colorization. It includes a client app, server backend, and Docker deployment scripts for hosted setups.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.