• Outgrown Windows Task Scheduler? Icon
    Outgrown Windows Task Scheduler?

    Free diagnostic identifies where your workflow is breaking down—with instant analysis of your scheduling environment.

    Windows Task Scheduler wasn't built for complex, cross-platform automation. Get a free diagnostic that shows exactly where things are failing and provides remediation recommendations. Interactive HTML report delivered in minutes.
    Download Free Tool
  • Vibes don’t ship, Retool does Icon
    Vibes don’t ship, Retool does

    Start from a prompt and build production-ready apps on your data—with security, permissions, and compliance built in.

    Vibe coding tools create cool demos, but Retool helps you build software your company can actually use. Generate internal apps that connect directly to your data—deployed in your cloud with enterprise security from day one. Build dashboards, admin panels, and workflows with granular permissions already in place. Stop prototyping and ship on a platform that actually passes security review.
    Build apps that ship
  • 1
    llama.cpp

    llama.cpp

    Port of Facebook's LLaMA model in C/C++

    The llama.cpp project enables the inference of Meta's LLaMA model (and other models) in pure C/C++ without requiring a Python runtime. It is designed for efficient and fast model execution, offering easy integration for applications needing LLM-based capabilities. The repository focuses on providing a highly optimized and portable implementation for running large language models directly within C/C++ environments.
    Downloads: 122 This Week
    Last Update:
    See Project
  • 2
    GPT4All

    GPT4All

    Run Local LLMs on Any Device. Open-source

    ...It integrates with the llama.cpp implementation and supports multiple LLMs, allowing users to interact with AI models privately. This project also supports Python integrations for easy automation and customization. GPT4All is ideal for individuals and businesses seeking private, offline access to powerful LLMs.
    Downloads: 127 This Week
    Last Update:
    See Project
  • 3
    vLLM

    vLLM

    A high-throughput and memory-efficient inference and serving engine

    vLLM is a fast and easy-to-use library for LLM inference and serving. High-throughput serving with various decoding algorithms, including parallel sampling, beam search, and more.
    Downloads: 50 This Week
    Last Update:
    See Project
  • 4
    SimpleMem

    SimpleMem

    SimpleMem: Efficient Lifelong Memory for LLM Agents

    SimpleMem is a lightweight memory-augmented model framework that helps developers build AI applications that retain long-term context and recall relevant information without overloading model context windows. It provides easy-to-use APIs for storing structured memory entries, querying those memories using semantic search, and retrieving context to augment prompt inputs for downstream processing. Unlike monolithic systems where memory management is ad-hoc, SimpleMem formalizes a memory lifecycle—write, index, retrieve, refine—so applications can handle user history, document collections, or dynamic contextual state systematically. ...
    Downloads: 5 This Week
    Last Update:
    See Project
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • 5
    LlamaIndex

    LlamaIndex

    Central interface to connect your LLM's with external data

    LlamaIndex (GPT Index) is a project that provides a central interface to connect your LLM's with external data. LlamaIndex is a simple, flexible interface between your external data and LLMs. It provides the following tools in an easy-to-use fashion. Provides indices over your unstructured and structured data for use with LLM's. These indices help to abstract away common boilerplate and pain points for in-context learning. Dealing with prompt limitations (e.g. 4096 tokens for Davinci) when the context is too big. Offers you a comprehensive toolset, trading off cost and performance.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 6
    LLaMA Efficient Tuning

    LLaMA Efficient Tuning

    Easy-to-use LLM fine-tuning framework (LLaMA-2, BLOOM, Falcon

    Easy-to-use LLM fine-tuning framework (LLaMA-2, BLOOM, Falcon, Baichuan, Qwen, ChatGLM2)
    Downloads: 1 This Week
    Last Update:
    See Project
  • 7
    Instructor Python

    Instructor Python

    Structured outputs for llms

    Instructor is a Python library that bridges OpenAI responses with structured data validation using Pydantic models. It lets developers specify expected output schemas and ensures that the responses from OpenAI APIs are automatically parsed and validated against those models. This makes integrating LLMs into structured workflows safer and more predictable, especially in production applications.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 8
    Mirascope

    Mirascope

    LLM abstractions that aren't obstructions

    Mirascope is a powerful, flexible, and user-friendly library that simplifies the process of working with LLMs through a unified interface that works across various supported providers, including OpenAI, Anthropic, Mistral, Gemini, Groq, Cohere, LiteLLM, Azure AI, Vertex AI, and Bedrock. Whether you're generating text, extracting structured information, or developing complex AI-driven agent systems, Mirascope provides the tools you need to streamline your development process and create...
    Downloads: 6 This Week
    Last Update:
    See Project
  • 9
    OpenLLMetry

    OpenLLMetry

    Open-source observability for your LLM application

    The repo contains standard OpenTelemetry instrumentations for LLM providers and Vector DBs, as well as a Traceloop SDK that makes it easy to get started with OpenLLMetry, while still outputting standard OpenTelemetry data that can be connected to your observability stack. If you already have OpenTelemetry instrumented, you can just add any of our instrumentations directly.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Total Network Visibility for Network Engineers and IT Managers Icon
    Total Network Visibility for Network Engineers and IT Managers

    Network monitoring and troubleshooting is hard. TotalView makes it easy.

    This means every device on your network, and every interface on every device is automatically analyzed for performance, errors, QoS, and configuration.
    Learn More
  • 10
    Khoj

    Khoj

    An AI personal assistant for your digital brain

    ...It is an offline-first, open-source AI personal assistant that is accessible from Emacs, Obsidian or your Web browser. Khoj is a thinking tool that is transparent, fun, and easy to engage with. You can build faster and better by using Khoj to search and reason across all your data sources. Khoj learns from your notes and documents to function as an extension of your brain. So that you can stay focused on doing what matters. Khoj started with the founding principle that a personal assistant be understandable, accessible and hackable. ...
    Downloads: 8 This Week
    Last Update:
    See Project
  • 11
    Engram

    Engram

    A New Axis of Sparsity for Large Language Models

    Engram is a high-performance embedding and similarity search library focused on making retrieval-augmented workflows efficient, scalable, and easy to adopt by developers building search, recommendation, or semantic matching systems. It provides utilities to generate embeddings from text or other structured data, index them using efficient approximate nearest neighbor algorithms, and perform real-time similarity queries even on large corpora. Engineered with speed and memory efficiency in mind, Engram supports batched indexing, incremental updates, and custom distance metrics so developers can tailor search behaviors to their domain’s needs. ...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 12
    ChatGLM3

    ChatGLM3

    ChatGLM3 series: Open Bilingual Chat LLMs | Open Source Bilingual Chat

    ChatGLM3 is ZhipuAI & Tsinghua KEG’s third-gen conversational model suite centered on the 6B-parameter ChatGLM3-6B. It keeps the series’ smooth dialog and low deployment cost while adding native tool use (function calling), a built-in code interpreter, and agent-style workflows. The family includes base and long-context variants (8K/32K/128K). The repo ships Python APIs, CLI and web demos (Gradio/Streamlit), an OpenAI-format API server, and a compact fine-tuning kit. Quantization (4/8-bit),...
    Downloads: 6 This Week
    Last Update:
    See Project
  • 13
    LangCheck

    LangCheck

    Simple, Pythonic building blocks to evaluate LLM applications

    Simple, Pythonic building blocks to evaluate LLM applications.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Dify

    Dify

    One API for plugins and datasets, one interface for prompt engineering

    Dify is an easy-to-use LLMOps platform designed to empower more people to create sustainable, AI-native applications. With visual orchestration for various application types, Dify offers out-of-the-box, ready-to-use applications that can also serve as Backend-as-a-Service APIs. Unify your development process with one API for plugins and datasets integration, and streamline your operations using a single interface for prompt engineering, visual analytics, and continuous improvement. ...
    Downloads: 6 This Week
    Last Update:
    See Project
  • 15
    LLM Datasets

    LLM Datasets

    Curated list of datasets and tools for post-training

    LLM Datasets curates and standardizes datasets commonly used to train and fine-tune large language models, reducing the overhead of hunting down sources and normalizing formats. The repository aims to make datasets easy to inspect and transform, with scripts for downloading, deduping, cleaning, and converting to formats like JSONL that slot into training pipelines. It highlights instruction-tuning and conversation-style corpora while also pointing to code, math, or domain-specific sets for targeted capabilities. Quality is a recurring theme: examples and utilities help filter low-value samples, enforce length limits, and split train/validation consistently so results are comparable. ...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 16
    llama2.c

    llama2.c

    Inference Llama 2 in one file of pure C

    llama2.c is a minimalist implementation of the Llama 2 language model architecture designed to run entirely in pure C. Created by Andrej Karpathy, this project offers an educational and lightweight framework for performing inference on small Llama 2 models without external dependencies. It provides a full training and inference pipeline: models can be trained in PyTorch and later executed using a concise 700-line C program (run.c). While it can technically load Meta’s official Llama 2...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 17
    bert4torch

    bert4torch

    An elegent pytorch implement of transformers

    An elegant PyTorch implement of transformers.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    PandasAI

    PandasAI

    PandasAI is a Python library that integrates generative AI

    PandasAI is a Python library that adds Generative AI capabilities to pandas, the popular data analysis and manipulation tool. It is designed to be used in conjunction with pandas, and is not a replacement for it. PandasAI makes pandas (and all the most used data analyst libraries) conversational, allowing you to ask questions to your data in natural language. For example, you can ask PandasAI to find all the rows in a DataFrame where the value of a column is greater than 5, and it will...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 19
    RWKV Runner

    RWKV Runner

    A RWKV management and startup tool, full automation, only 8MB

    RWKV (pronounced as RwaKuv) is an RNN with GPT-level LLM performance, which can also be directly trained like a GPT transformer (parallelizable). So it's combining the best of RNN and transformer - great performance, fast inference, fast training, saves VRAM, "infinite" ctxlen, and free text embedding. Moreover it's 100% attention-free. Default configs has enabled custom CUDA kernel acceleration, which is much faster and consumes much less VRAM. If you encounter possible compatibility...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 20
    llm.c

    llm.c

    LLM training in simple, raw C/CUDA

    ...The code illustrates how to wire forward passes, losses, and simple training or inference loops with direct control over arrays and buffers. Its compact design makes it easy to trace execution, profile hotspots, and understand the cost of each operation. Portability is a goal: it aims to compile with common toolchains and run on modest hardware for small experiments. Rather than delivering a production-grade stack, it serves as a reference and learning scaffold for people who want to “see the metal” behind LLMs.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 21
    pgvecto.rs

    pgvecto.rs

    Vector database plugin for Postgres, written in Rust

    ...It is currently under heavy development, please take care when using it in production. pgvecto.rs is a Postgres extension, which means that you can use it directly within your existing database. This makes it easy to integrate into your existing workflows and applications. pgvecto.rs supports filtering. You can set conditions when searching or retrieving points. This is the missing feature of other postgres extensions.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 22
    MegaParse

    MegaParse

    File Parser optimised for LLM Ingestion with no loss

    MegaParse is a file parser optimized for Large Language Model (LLM) ingestion, ensuring no loss of information. It efficiently parses various document formats, such as PDFs, DOCX, and PPTX, converting them into formats ideal for processing by LLMs. This tool is essential for applications that require accurate and comprehensive data extraction from diverse document types.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    H2O LLM Studio

    H2O LLM Studio

    Framework and no-code GUI for fine-tuning LLMs

    ...You can also use H2O LLM Studio with the command line interface (CLI) and specify the configuration file that contains all the experiment parameters. To finetune using H2O LLM Studio with CLI, activate the pipenv environment by running make shell. With H2O LLM Studio, training your large language model is easy and intuitive. First, upload your dataset and then start training your model. Start by creating an experiment. You can then monitor and manage your experiment, compare experiments, or push the model to Hugging Face to share it with the community.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 24
    spacy-llm

    spacy-llm

    Integrating LLMs into structured NLP pipelines

    Large Language Models (LLMs) feature powerful natural language understanding capabilities. With only a few (and sometimes no) examples, an LLM can be prompted to perform custom NLP tasks such as text categorization, named entity recognition, coreference resolution, information extraction and more. This package integrates Large Language Models (LLMs) into spaCy, featuring a modular system for fast prototyping and prompting, and turning unstructured responses into robust outputs for various...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    NVIDIA NeMo

    NVIDIA NeMo

    Toolkit for conversational AI

    ...Every module can easily be customized, extended, and composed to create new conversational AI model architectures. Conversational AI architectures are typically large and require a lot of data and compute for training. NeMo uses PyTorch Lightning for easy and performant multi-GPU/multi-node mixed-precision training. Supported models: Jasper, QuartzNet, CitriNet, Conformer-CTC, Conformer-Transducer, Squeezeformer-CTC, Squeezeformer-Transducer, ContextNet, LSTM-Transducer (RNNT), LSTM-CTC. NGC collection of pre-trained speech processing models.
    Downloads: 1 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • Next