Browse free open source C Large Language Models (LLM) and projects below. Use the toggles on the left to filter open source C Large Language Models (LLM) by OS, license, language, programming language, and project status.

  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    Build gen AI apps with an all-in-one modern database: MongoDB Atlas

    MongoDB Atlas provides built-in vector search and a flexible document model so developers can build, scale, and run gen AI apps without stitching together multiple databases. From LLM integration to semantic search, Atlas simplifies your AI architecture—and it’s free to get started.
    Start Free
  • Keep company data safe with Chrome Enterprise Icon
    Keep company data safe with Chrome Enterprise

    Protect your business with AI policies and data loss prevention in the browser

    Make AI work your way with Chrome Enterprise. Block unapproved sites and set custom data controls that align with your company's policies.
    Download Chrome
  • 1
    Ollama

    Ollama

    Get up and running with Llama 2 and other large language models

    Run, create, and share large language models (LLMs). Get up and running with large language models, locally. Run Llama 2 and other models on macOS. Customize and create your own.
    Downloads: 124 This Week
    Last Update:
    See Project
  • 2
    llama.cpp

    llama.cpp

    Port of Facebook's LLaMA model in C/C++

    The llama.cpp project enables the inference of Meta's LLaMA model (and other models) in pure C/C++ without requiring a Python runtime. It is designed for efficient and fast model execution, offering easy integration for applications needing LLM-based capabilities. The repository focuses on providing a highly optimized and portable implementation for running large language models directly within C/C++ environments.
    Downloads: 50 This Week
    Last Update:
    See Project
  • 3
    Alpaca.cpp

    Alpaca.cpp

    Locally run an Instruction-Tuned Chat-Style LLM

    Run a fast ChatGPT-like model locally on your device. This combines the LLaMA foundation model with an open reproduction of Stanford Alpaca a fine-tuning of the base model to obey instructions (akin to the RLHF used to train ChatGPT) and a set of modifications to llama.cpp to add a chat interface. Download the zip file corresponding to your operating system from the latest release. The weights are based on the published fine-tunes from alpaca-lora, converted back into a PyTorch checkpoint with a modified script and then quantized with llama.cpp the regular way.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 4
    llama2.c

    llama2.c

    Inference Llama 2 in one file of pure C

    llama2.c is a minimalist implementation of the Llama 2 language model architecture designed to run entirely in pure C. Created by Andrej Karpathy, this project offers an educational and lightweight framework for performing inference on small Llama 2 models without external dependencies. It provides a full training and inference pipeline: models can be trained in PyTorch and later executed using a concise 700-line C program (run.c). While it can technically load Meta’s official Llama 2 models, current support is limited to fp32 precision, meaning practical use is capped at models up to around 7B parameters. The goal of llama2.c is to demonstrate how a compact and transparent implementation can perform meaningful inference even with small models, emphasizing simplicity, clarity, and accessibility. The project builds upon lessons from nanoGPT and takes inspiration from llama.cpp, focusing instead on minimalism and educational value over large-scale performance.
    Downloads: 1 This Week
    Last Update:
    See Project
  • Build Securely on Azure with Proven Frameworks Icon
    Build Securely on Azure with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 5
    CTransformers

    CTransformers

    Python bindings for the Transformer models implemented in C/C++

    Python bindings for the Transformer models implemented in C/C++ using GGML library.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.