...The repository is structured into chapters that align with the educational progression of the book — covering everything from foundational topics like tokens, embeddings, and transformer architecture to advanced techniques such as prompt engineering, semantic search, retrieval-augmented generation (RAG), multimodal LLMs, and fine-tuning. Each chapter contains executable Jupyter notebooks that are designed to be run in environments like Google Colab, making it easy for learners to experiment interactively with models, visualize attention patterns, implement classification and generation tasks.