Showing 12 open source projects for "written in python"

View related business solutions
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    The database for AI-powered applications.

    MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
    Start Free
  • Cloud-based help desk software with ServoDesk Icon
    Cloud-based help desk software with ServoDesk

    Full access to Enterprise features. No credit card required.

    What if You Could Automate 90% of Your Repetitive Tasks in Under 30 Days? At ServoDesk, we help businesses like yours automate operations with AI, allowing you to cut service times in half and increase productivity by 25% - without hiring more staff.
    Try ServoDesk for free
  • 1
    ConcurrentSim.jl

    ConcurrentSim.jl

    Discrete event process oriented simulation framework written in Julia

    A discrete event process-oriented simulation framework written in Julia inspired by the Python library SimPy. One of the longest-lived Julia packages (originally under the name SimJulia).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    UnROOT.jl

    UnROOT.jl

    Native Julia I/O package to work with CERN ROOT files objects

    UnROOT.jl is a reader for the CERN ROOT file format written entirely in Julia, without any dependence on ROOT or Python.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    QuantumOptics.jl

    QuantumOptics.jl

    Library for the numerical simulation of closed as well as open quantum

    QuantumOptics.jl is a numerical framework written in the Julia programming language that makes it easy to simulate various kinds of open quantum systems. It is inspired by the Quantum Optics Toolbox for MATLAB and the Python framework QuTiP. QuantumOptics.jl optimizes processor usage and memory consumption by relying on different ways to store and work with operators. The framework comes with a plethora of pre-defined systems and interactions making it very easy to focus on the physics, not on the numerics. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Sundials.jl

    Sundials.jl

    Julia interface to Sundials, including a nonlinear solver

    This is a suite for numerically solving differential equations written in Julia and available for use in Julia, Python, and R. The purpose of this package is to supply efficient Julia implementations of solvers for various differential equations.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 5
    CounterfactualExplanations.jl

    CounterfactualExplanations.jl

    A package for Counterfactual Explanations and Algorithmic Recourse

    CounterfactualExplanations.jl is a package for generating Counterfactual Explanations (CE) and Algorithmic Recourse (AR) for black-box algorithms. Both CE and AR are related tools for explainable artificial intelligence (XAI). While the package is written purely in Julia, it can be used to explain machine learning algorithms developed and trained in other popular programming languages like Python and R. See below for a short introduction and other resources or dive straight into the docs.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    DifferentialEquations.jl

    DifferentialEquations.jl

    Multi-language suite for high-performance solvers of equations

    This is a suite for numerically solving differential equations written in Julia and available for use in Julia, Python, and R. The purpose of this package is to supply efficient Julia implementations of solvers for various differential equations. The well-optimized DifferentialEquations solvers benchmark as some of the fastest implementations, using classic algorithms and ones from recent research which routinely outperform the “standard” C/Fortran methods, and include algorithms optimized for high-precision and HPC applications. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    OrdinaryDiffEq.jl

    OrdinaryDiffEq.jl

    High performance ordinary differential equation (ODE)

    This is a suite for numerically solving differential equations written in Julia and available for use in Julia, Python, and R. The purpose of this package is to supply efficient Julia implementations of solvers for various differential equations. The well-optimized DifferentialEquations solvers benchmark as some of the fastest implementations, using classic algorithms and ones from recent research that routinely outperform the “standard” C/Fortran methods, and include algorithms optimized for high-precision and HPC applications. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Bayesian Julia

    Bayesian Julia

    Bayesian Statistics using Julia and Turing

    Bayesian statistics is an approach to inferential statistics based on Bayes' theorem, where available knowledge about parameters in a statistical model is updated with the information in observed data. The background knowledge is expressed as a prior distribution and combined with observational data in the form of a likelihood function to determine the posterior distribution. The posterior can also be used for making predictions about future events. Bayesian statistics is a departure from...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Kinetic.jl

    Kinetic.jl

    Universal modeling and simulation of fluid mechanics upon ML

    Kinetic is a computational fluid dynamics toolbox written in Julia. It aims to furnish efficient modeling and simulation methodologies for fluid dynamics, augmented by the power of machine learning. Based on differentiable programming, mechanical and neural network models are fused and solved in a unified framework. Simultaneous 1-3 dimensional numerical simulations can be performed on CPUs and GPUs.
    Downloads: 1 This Week
    Last Update:
    See Project
  • Keep company data safe with Chrome Enterprise Icon
    Keep company data safe with Chrome Enterprise

    Protect your business with AI policies and data loss prevention in the browser

    Make AI work your way with Chrome Enterprise. Block unapproved sites and set custom data controls that align with your company's policies.
    Download Chrome
  • 10
    ThinkJulia.jl

    ThinkJulia.jl

    Port of the book Think Python to the Julia programming language

    ThinkJulia.jl is an open source educational project that adapts Think Python by Allen B. Downey into the Julia programming language, with contributions by Ben Lauwens. It provides a comprehensive introduction to programming and computational thinking using Julia’s modern, high-performance features. The book is structured to gradually teach core concepts such as variables, control flow, functions, recursion, object-oriented programming, and data structures, while offering hands-on exercises...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 11
    AlphaZero.jl

    AlphaZero.jl

    A generic, simple and fast implementation of Deepmind's AlphaZero

    ...We believe that this methodology can have exciting applications in many different research areas. Because AlphaZero is resource-hungry, successful open-source implementations (such as Leela Zero) are written in low-level languages (such as C++) and optimized for highly distributed computing environments. This makes them hardly accessible for students, researchers and hackers. Many simple Python implementations can be found on Github, but none of them is able to beat a reasonable baseline on games such as Othello or Connect Four. As an illustration, the benchmark in the README of the most popular of them only features a random baseline, along with a greedy baseline that does not appear to be significantly stronger.
    Downloads: 28 This Week
    Last Update:
    See Project
  • 12
    Indicators.jl

    Indicators.jl

    Financial market technical analysis & indicators in Julia

    Indicators is a Julia package offering efficient implementations of many technical analysis indicators and algorithms. This work is inspired by the TTR package in R and the Python implementation of TA-Lib, and the ultimate goal is to implement all of the functionality of these offerings (and more) in Julia. This package has been written to be able to interface with both native Julia Array types, as well as the TS time series type from the Temporal package. Contributions are of course always welcome for wrapping any of these functions in methods for other types and/or packages out there, as are suggestions for other indicators to add to the lists.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next