Showing 10 open source projects for "website using python"

View related business solutions
  • Build AI Apps with Gemini 3 on Vertex AI Icon
    Build AI Apps with Gemini 3 on Vertex AI

    Access Google’s most capable multimodal models. Train, test, and deploy AI with 200+ foundation models on one platform.

    Vertex AI gives developers access to Gemini 3—Google’s most advanced reasoning and coding model—plus 200+ foundation models including Claude, Llama, and Gemma. Build generative AI apps with Vertex AI Studio, customize with fine-tuning, and deploy to production with enterprise-grade MLOps. New customers get $300 in free credits.
    Try Vertex AI Free
  • Managed MySQL, PostgreSQL, and SQL Databases on Google Cloud Icon
    Managed MySQL, PostgreSQL, and SQL Databases on Google Cloud

    Get back to your application and leave the database to us. Cloud SQL automatically handles backups, replication, and scaling.

    Cloud SQL is a fully managed relational database for MySQL, PostgreSQL, and SQL Server. We handle patching, backups, replication, encryption, and failover—so you can focus on your app. Migrate from on-prem or other clouds with free Database Migration Service. IDC found customers achieved 246% ROI. New customers get $300 in credits plus a 30-day free trial.
    Try Cloud SQL Free
  • 1
    Conda.jl

    Conda.jl

    https://github.com/JuliaPy/Conda.jl

    This package allows one to use conda as a cross-platform binary provider for Julia for other Julia packages, especially to install binaries that have complicated dependencies like Python. conda is a package manager that started as the binary package manager for the Anaconda Python distribution, but it also provides arbitrary packages. Instead of the full Anaconda distribution, Conda.jl uses the miniconda Python environment, which only includes conda and its dependencies.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    The PyPlot module for Julia

    The PyPlot module for Julia

    Plotting for Julia based on matplotlib.pyplot

    This module provides a Julia interface to the Matplotlib plotting library from Python, and specifically to the matplotlib.pyplot module. PyPlot uses the Julia PyCall package to call Matplotlib directly from Julia with little or no overhead (arrays are passed without making a copy). (See also PythonPlot.jl for a version of PyPlot.jl using the alternative PythonCall.jl package.) This package takes advantage of Julia's multimedia I/O API to display plots in any Julia graphical backend, including as inline graphics in IJulia. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    DifferentialEquations.jl

    DifferentialEquations.jl

    Multi-language suite for high-performance solvers of equations

    This is a suite for numerically solving differential equations written in Julia and available for use in Julia, Python, and R. The purpose of this package is to supply efficient Julia implementations of solvers for various differential equations. The well-optimized DifferentialEquations solvers benchmark as some of the fastest implementations, using classic algorithms and ones from recent research which routinely outperform the “standard” C/Fortran methods, and include algorithms optimized for high-precision and HPC applications. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    OrdinaryDiffEq.jl

    OrdinaryDiffEq.jl

    High performance ordinary differential equation (ODE)

    This is a suite for numerically solving differential equations written in Julia and available for use in Julia, Python, and R. The purpose of this package is to supply efficient Julia implementations of solvers for various differential equations. The well-optimized DifferentialEquations solvers benchmark as some of the fastest implementations, using classic algorithms and ones from recent research that routinely outperform the “standard” C/Fortran methods, and include algorithms optimized for high-precision and HPC applications. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Cut Cloud Costs with Google Compute Engine Icon
    Cut Cloud Costs with Google Compute Engine

    Save up to 91% with Spot VMs and get automatic sustained-use discounts. One free VM per month, plus $300 in credits.

    Save on compute costs with Compute Engine. Reduce your batch jobs and workload bill 60-91% with Spot VMs. Compute Engine's committed use offers customers up to 70% savings through sustained use discounts. Plus, you get one free e2-micro VM monthly and $300 credit to start.
    Try Compute Engine
  • 5
    Vim Codefmt

    Vim Codefmt

    Vim plugin for syntax-aware code formatting

    vim-codefmt is a syntax-aware code formatting plugin for Vim that provides a unified interface to many best-in-class formatters across languages. It exposes simple commands to format either a selected range or an entire buffer, and integrates cleanly into everyday editing workflows. The plugin ships with a registry of built-in formatters and a pluggable architecture, allowing other plugins to register additional formatters without friction. Configuration is handled through maktaba and Glaive...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 6
    CxxWrap

    CxxWrap

    Package to make C++ libraries available in Julia

    This package aims to provide a Boost. Python-like wrapping for C++ types and functions to Julia. The idea is to write the code for the Julia wrapper in C++, and then use a one-liner on the Julia side to make the wrapped C++ library available there. The mechanism behind this package is that functions and types are registered in C++ code that is compiled into a dynamic library. This dynamic library is then loaded into Julia, where the Julia part of this package uses the data provided through a...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Bayesian Julia

    Bayesian Julia

    Bayesian Statistics using Julia and Turing

    Bayesian statistics is an approach to inferential statistics based on Bayes' theorem, where available knowledge about parameters in a statistical model is updated with the information in observed data. The background knowledge is expressed as a prior distribution and combined with observational data in the form of a likelihood function to determine the posterior distribution. The posterior can also be used for making predictions about future events. Bayesian statistics is a departure from...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 8
    ThinkJulia.jl

    ThinkJulia.jl

    Port of the book Think Python to the Julia programming language

    ThinkJulia.jl is an open source educational project that adapts Think Python by Allen B. Downey into the Julia programming language, with contributions by Ben Lauwens. It provides a comprehensive introduction to programming and computational thinking using Julia’s modern, high-performance features. The book is structured to gradually teach core concepts such as variables, control flow, functions, recursion, object-oriented programming, and data structures, while offering hands-on exercises to reinforce each topic. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 9
    ScikitLearn.jl

    ScikitLearn.jl

    Julia implementation of the scikit-learn API

    The scikit-learn Python library has proven very popular with machine learning researchers and data scientists in the last five years. It provides a uniform interface for training and using models, as well as a set of tools for chaining (pipelines), evaluating, and tuning model hyperparameters. ScikitLearn.jl brings these capabilities to Julia. Its primary goal is to integrate both Julia- and Python-defined models together into the scikit-learn framework.
    Downloads: 0 This Week
    Last Update:
    See Project
  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • 10
    Julia Data Science

    Julia Data Science

    Book on Julia for Data Science

    This is an open source and open access book on how to do Data Science using Julia. Our target audience are researchers from all fields of applied sciences. Of course, we hope to be useful for industry too. You can navigate through the pages of the ebook by using the arrow keys (left/right) on your keyboard.
    Downloads: 1 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next
MongoDB Logo MongoDB