Search Results for "python programming language"

Showing 56 open source projects for "python programming language"

View related business solutions
  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • Get the most trusted enterprise browser Icon
    Get the most trusted enterprise browser

    Advanced built-in security helps IT prevent breaches before they happen

    Defend against security incidents with Chrome Enterprise. Create customizable controls, manage extensions and set proactive alerts to keep your data and employees protected without slowing down productivity.
    Download Chrome
  • 1
    The Julia Programming Language

    The Julia Programming Language

    High-level, high-performance dynamic language for technical computing

    Julia is a fast, open source high-performance dynamic language for technical computing. It can be used for data visualization and plotting, deep learning, machine learning, scientific computing, parallel computing and so much more. Having a high level syntax, Julia is easy to use for programmers of every level and background. Julia has more than 2,800 community-registered packages including various mathematical libraries, data manipulation tools, and packages for general purpose computing...
    Downloads: 15 This Week
    Last Update:
    See Project
  • 2
    Computational Thinking

    Computational Thinking

    Introduction to computational thinking with Julia

    Computational Thinking is an open source MIT course repository that teaches computational problem-solving through the Julia programming language. The course integrates mathematics, computing, and real-world applications into a unified curriculum, making it suitable for students across science, engineering, and data-driven fields. It emphasizes learning how to translate problems into computational terms and developing algorithms and models to analyze them effectively. Using Julia, the course...
    Downloads: 9 This Week
    Last Update:
    See Project
  • 3
    Julia VS Code

    Julia VS Code

    Julia extension for Visual Studio Code

    This VS Code extension provides support for the Julia programming language. We build on Julia’s unique combination of ease-of-use and performance. Beginners and experts can build better software more quickly, and get to a result faster. With a completely live environment, Julia for VS Code aims to take the frustration and guesswork out of programming and put the fun back in. A hybrid “canvas programming” style combines the exploratory power of a notebook with the productivity and static...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 4
    TimeZones.jl

    TimeZones.jl

    IANA time zone database access for the Julia programming language

    IANA time zone database access for the Julia programming language. TimeZones.jl extends the Date/DateTime support for Julia to include a new time zone-aware TimeType: ZonedDateTime.
    Downloads: 4 This Week
    Last Update:
    See Project
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 5
    Graphs.jl

    Graphs.jl

    An optimized graphs package for the Julia programming language

    The goal of Graphs.jl is to offer a performant platform for network and graph analysis in Julia, following the example of libraries such as NetworkX in Python. Offers a set of simple, concrete graph implementations – SimpleGraph (for undirected graphs) and SimpleDiGraph (for directed graphs), an API for the development of more sophisticated graph implementations under the AbstractGraph type, and a large collection of graph algorithms with the same requirements as this API.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 6
    Gridap.jl

    Gridap.jl

    Grid-based approximation of partial differential equations in Julia

    Gridap provides a set of tools for the grid-based approximation of partial differential equations (PDEs) written in the Julia programming language. The library currently supports linear and nonlinear PDE systems for scalar and vector fields, single and multi-field problems, conforming and nonconforming finite element (FE) discretizations, on structured and unstructured meshes of simplices and n-cubes. It also provides methods for time integration. Gridap is extensible and modular. One can...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 7
    BetaML.jl

    BetaML.jl

    Beta Machine Learning Toolkit

    The Beta Machine Learning Toolkit is a package including many algorithms and utilities to implement machine learning workflows in Julia, Python, R and any other language with a Julia binding. All models are implemented entirely in Julia and are hosted in the repository itself (i.e. they are not wrapper to third-party models). If your favorite option or model is missing, you can try to implement it yourself and open a pull request to share it (see the section Contribute below) or request its...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 8
    LLVM.jl

    LLVM.jl

    Julia wrapper for the LLVM C API

    A Julia wrapper for the LLVM C API. The LLVM.jl package is a Julia wrapper for the LLVM C API, and can be used to work with the LLVM compiler framework from Julia. You can use the package to work with LLVM code generated by Julia, to interoperate with the Julia compiler, or to create your own compiler. It is heavily used by the different GPU compilers for the Julia programming language.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 9
    JuliaWorkshop

    JuliaWorkshop

    Intensive Julia workshop that takes you from zero to hero

    This is an intensive workshop for the Julia language, composed out of three 2-hour segments. It targets people already familiar with programming, so that the established basics such as for-loops are skipped through quickly and efficiently. Nevertheless, it assumes only rudimentary programming familiarity and does explain concepts that go beyond the basics. The goal of the workshop is to take you from zero to hero (regarding Julia): even if you know nothing about Julia, by the end you should...
    Downloads: 3 This Week
    Last Update:
    See Project
  • Build Securely on Azure with Proven Frameworks Icon
    Build Securely on Azure with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 10
    SymbolicUtils.jl

    SymbolicUtils.jl

    Symbolic expressions, rewriting and simplification

    SymbolicUtils is a practical symbolic programming utility in Julia. It lets you create, rewrite and simplify symbolic expressions, and generate Julia code from them. SymbolicUtils.jl provides various utilities for symbolic computing. SymbolicUtils.jl is what one would use to build a Computer Algebra System (CAS). If you're looking for a complete CAS, similar to SymPy or Mathematica, see Symbolics.jl. If you want to build a crazy CAS for your weird Octonian algebras, you've come to the right...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 11
    Flux.jl

    Flux.jl

    Relax! Flux is the ML library that doesn't make you tensor

    Flux is an elegant approach to machine learning. It's a 100% pure Julia stack and provides lightweight abstractions on top of Julia's native GPU and AD support. Flux makes the easy things easy while remaining fully hackable. Flux provides a single, intuitive way to define models, just like mathematical notation. Julia transparently compiles your code, optimizing and fusing kernels for the GPU, for the best performance. Existing Julia libraries are differentiable and can be incorporated...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 12
    Catlab.jl

    Catlab.jl

    A framework for applied category theory in the Julia language

    Catlab.jl is a framework for applied and computational category theory, written in the Julia language. Catlab provides a programming library and interactive interface for applications of category theory to scientific and engineering fields. It emphasizes monoidal categories due to their wide applicability but can support any categorical structure that is formalizable as a generalized algebraic theory. First and foremost, Catlab provides data structures, algorithms, and serialization for applied...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 13
    Nemo.jl

    Nemo.jl

    Julia bindings for various mathematical libraries (including flint2)

    Nemo is a computer algebra package for the Julia programming language. It aims to cover commutative algebra, number theory and group theory. Julia bindings for various mathematical libraries (including flint2)
    Downloads: 2 This Week
    Last Update:
    See Project
  • 14
    CUDA.jl

    CUDA.jl

    CUDA programming in Julia

    High-performance GPU programming in a high-level language. JuliaGPU is a GitHub organization created to unify the many packages for programming GPUs in Julia. With its high-level syntax and flexible compiler, Julia is well-positioned to productively program hardware accelerators like GPUs without sacrificing performance. The latest development version of CUDA.jl requires Julia 1.8 or higher. If you are using an older version of Julia, you need to use a previous version of CUDA.jl...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 15
    General

    General

    The official registry of general Julia packages

    General is the default package registry for the Julia programming language, providing the foundation for Julia’s package manager, Pkg.jl. It stores essential information about packages, including versions, dependencies, and compatibility constraints, and serves as the central hub for the Julia package ecosystem. The registry is open to all and makes it easy for developers and researchers to access, install, and share packages across a wide range of domains. New packages and updates are added...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 16
    Gen.jl

    Gen.jl

    A general-purpose probabilistic programming system

    An open-source stack for generative modeling and probabilistic inference. Gen’s inference library gives users building blocks for writing efficient probabilistic inference algorithms that are tailored to their models, while automating the tricky math and the low-level implementation details. Gen helps users write hybrid algorithms that combine neural networks, variational inference, sequential Monte Carlo samplers, and Markov chain Monte Carlo. Gen features an easy-to-use modeling language...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 17
    DifferentialEquations.jl

    DifferentialEquations.jl

    Multi-language suite for high-performance solvers of equations

    This is a suite for numerically solving differential equations written in Julia and available for use in Julia, Python, and R. The purpose of this package is to supply efficient Julia implementations of solvers for various differential equations. The well-optimized DifferentialEquations solvers benchmark as some of the fastest implementations, using classic algorithms and ones from recent research which routinely outperform the “standard” C/Fortran methods, and include algorithms optimized...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 18
    OpenCL.jl

    OpenCL.jl

    OpenCL Julia bindings

    Julia interface for the OpenCL parallel computation API. This package aims to be a complete solution for OpenCL programming in Julia, similar in scope to PyOpenCL for Python. It provides a high level API for OpenCL to make programing hardware accelerators, such as GPUs, FPGAs, and DSPs, as well as multicore CPUs much less onerous.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 19
    Symbolics.jl

    Symbolics.jl

    Symbolic programming for the next generation of numerical software

    Symbolics.jl is a high-performance symbolic computation library for the Julia programming language. It enables users to define, manipulate, and analyze mathematical expressions symbolically, with strong support for symbolic differentiation, simplification, equation solving, and code generation. Designed for use in scientific computing, machine learning, and engineering, Symbolics.jl integrates smoothly with Julia’s numerical ecosystem, allowing symbolic expressions to be compiled and optimized...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 20
    QuantumOptics.jl

    QuantumOptics.jl

    Library for the numerical simulation of closed as well as open quantum

    QuantumOptics.jl is a numerical framework written in the Julia programming language that makes it easy to simulate various kinds of open quantum systems. It is inspired by the Quantum Optics Toolbox for MATLAB and the Python framework QuTiP. QuantumOptics.jl optimizes processor usage and memory consumption by relying on different ways to store and work with operators. The framework comes with a plethora of pre-defined systems and interactions making it very easy to focus on the physics...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    InvertibleNetworks.jl

    InvertibleNetworks.jl

    A Julia framework for invertible neural networks

    Building blocks for invertible neural networks in the Julia programming language.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 22
    Metatheory.jl

    Metatheory.jl

    General purpose algebraic metaprogramming

    Metatheory.jl is a general purpose term rewriting, metaprogramming and algebraic computation library for the Julia programming language, designed to take advantage of the powerful reflection capabilities to bridge the gap between symbolic mathematics, abstract interpretation, equational reasoning, optimization, composable compiler transforms, and advanced homoiconic pattern matching features. The core features of Metatheory.jl are a powerful rewrite rule definition language, a vast library...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 23
    Zygote

    Zygote

    21st century AD

    Zygote provides source-to-source automatic differentiation (AD) in Julia, and is the next-gen AD system for the Flux differentiable programming framework. For more details and benchmarks of Zygote's technique, see our paper. You may want to check out Flux for more interesting examples of Zygote usage; the documentation here focuses on internals and advanced AD usage.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 24
    Circuitscape.jl

    Circuitscape.jl

    Algorithms from circuit theory to predict connectivity

    Circuitscape is an open-source program that uses circuit theory to model connectivity in heterogeneous landscapes. Its most common applications include modeling the movement and gene flow of plants and animals, as well as identifying areas important for connectivity conservation. The new Circuitscape is built entirely in the Julia language, a new programming language for technical computing. Julia is built from the ground up to be fast. As such, this offers a number of advantages over...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    JUDI.jl

    JUDI.jl

    Julia Devito inversion

    JUDI is a framework for large-scale seismic modeling and inversion and is designed to enable rapid translations of algorithms to fast and efficient code that scales to industry-size 3D problems. The focus of the package lies on seismic modeling as well as PDE-constrained optimization such as full-waveform inversion (FWI) and imaging (LS-RTM). Wave equations in JUDI are solved with Devito, a Python domain-specific language for automated finite-difference (FD) computations. JUDI's modeling...
    Downloads: 1 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • Next
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.