Search Results for "parallel computing datamaning"

Showing 6 open source projects for "parallel computing datamaning"

View related business solutions
  • Managed MySQL, PostgreSQL, and SQL Databases on Google Cloud Icon
    Managed MySQL, PostgreSQL, and SQL Databases on Google Cloud

    Get back to your application and leave the database to us. Cloud SQL automatically handles backups, replication, and scaling.

    Cloud SQL is a fully managed relational database for MySQL, PostgreSQL, and SQL Server. We handle patching, backups, replication, encryption, and failover—so you can focus on your app. Migrate from on-prem or other clouds with free Database Migration Service. IDC found customers achieved 246% ROI. New customers get $300 in credits plus a 30-day free trial.
    Try Cloud SQL Free
  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • 1
    Dagger.jl

    Dagger.jl

    A framework for out-of-core and parallel execution

    Dagger.jl is a framework for out-of-core and parallel computing in Julia that allows users to construct and execute dynamic task graphs. It is designed for large-scale, distributed, and memory-efficient computations. Dagger supports lazy evaluation and scheduling across multiple threads or machines, enabling high-performance workflows for data processing, scientific computing, and machine learning.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    101-0250-00

    101-0250-00

    ETH course - Solving PDEs in parallel on GPUs

    This course aims to cover state-of-the-art methods in modern parallel Graphical Processing Unit (GPU) computing, supercomputing and code development with applications to natural sciences and engineering.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    The Julia Programming Language

    The Julia Programming Language

    High-level, high-performance dynamic language for technical computing

    Julia is a fast, open source high-performance dynamic language for technical computing. It can be used for data visualization and plotting, deep learning, machine learning, scientific computing, parallel computing and so much more. Having a high level syntax, Julia is easy to use for programmers of every level and background. Julia has more than 2,800 community-registered packages including various mathematical libraries, data manipulation tools, and packages for general purpose computing. ...
    Downloads: 7 This Week
    Last Update:
    See Project
  • 4
    LoopVectorization.jl

    LoopVectorization.jl

    Macro(s) for vectorizing loops

    LoopVectorization.jl is a Julia package for accelerating numerical loops by automatically applying SIMD (Single Instruction, Multiple Data) vectorization and other low-level optimizations. It analyzes loops and generates highly efficient code that leverages CPU vector instructions, making it ideal for performance-critical computing in fields such as scientific computing, signal processing, and machine learning.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Build AI Apps with Gemini 3 on Vertex AI Icon
    Build AI Apps with Gemini 3 on Vertex AI

    Access Google’s most capable multimodal models. Train, test, and deploy AI with 200+ foundation models on one platform.

    Vertex AI gives developers access to Gemini 3—Google’s most advanced reasoning and coding model—plus 200+ foundation models including Claude, Llama, and Gemma. Build generative AI apps with Vertex AI Studio, customize with fine-tuning, and deploy to production with enterprise-grade MLOps. New customers get $300 in free credits.
    Try Vertex AI Free
  • 5
    ModelingToolkit.jl

    ModelingToolkit.jl

    Modeling framework for automatically parallelized scientific ML

    ModelingToolkit.jl is a modeling language for high-performance symbolic-numeric computation in scientific computing and scientific machine learning. It then mixes ideas from symbolic computational algebra systems with causal and acausal equation-based modeling frameworks to give an extendable and parallel modeling system. It allows for users to give a high-level description of a model for symbolic preprocessing to analyze and enhance the model.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 6
    FileTrees.jl

    FileTrees.jl

    Parallel file processing made easy

    ...When computing lazy trees, these values are held in distributed memory and operated on in parallel.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next
MongoDB Logo MongoDB
Gen AI apps are built with MongoDB Atlas
Atlas offers built-in vector search and global availability across 125+ regions. Start building AI apps faster, all in one place.
Try Free →