Showing 11 open source projects for "kernel-br"

View related business solutions
  • Cut Cloud Costs with Google Compute Engine Icon
    Cut Cloud Costs with Google Compute Engine

    Save up to 91% with Spot VMs and get automatic sustained-use discounts. One free VM per month, plus $300 in credits.

    Save on compute costs with Compute Engine. Reduce your batch jobs and workload bill 60-91% with Spot VMs. Compute Engine's committed use offers customers up to 70% savings through sustained use discounts. Plus, you get one free e2-micro VM monthly and $300 credit to start.
    Try Compute Engine
  • Easily Host LLMs and Web Apps on Cloud Run Icon
    Easily Host LLMs and Web Apps on Cloud Run

    Run everything from popular models with on-demand NVIDIA L4 GPUs to web apps without infrastructure management.

    Run frontend and backend services, batch jobs, host LLMs, and queue processing workloads without the need to manage infrastructure. Cloud Run gives you on-demand GPU access for hosting LLMs and running real-time AI—with 5-second cold starts and automatic scale-to-zero so you only pay for actual usage. New customers get $300 in free credit to start.
    Try Cloud Run Free
  • 1
    KernelDensity.jl

    KernelDensity.jl

    Kernel density estimators for Julia

    Kernel density estimators for Julia.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 2
    IJulia.jl

    IJulia.jl

    Julia kernel for Jupyter

    IJulia is a Julia-language backend (kernel) for Jupyter notebooks, allowing users to write and execute Julia code interactively in browser-based notebooks. It integrates seamlessly with Jupyter’s ecosystem, supporting markdown, plotting, multimedia, and inline output. IJulia is ideal for scientific computing, data analysis, and education, combining the power of Julia with the interactive capabilities of Jupyter.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 3
    NeuralOperators.jl

    NeuralOperators.jl

    DeepONets, Neural Operators, Physics-Informed Neural Ops in Julia

    ...Instead of solving by finite element method, a PDE problem can be resolved by training a neural network to learn an operator mapping from infinite-dimensional space (u, t) to infinite-dimensional space f(u, t). Neural operator learns a continuous function between two continuous function spaces. The kernel can be trained on different geometry, which is learned from a graph. Fourier neural operator learns a neural operator with Dirichlet kernel to form a Fourier transformation. It performs Fourier transformation across infinite-dimensional function spaces and learns better than neural operators. Markov neural operator learns a neural operator with Fourier operators.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 4
    LIBSVM.jl

    LIBSVM.jl

    LIBSVM bindings for Julia

    LIBSVM bindings for Julia. This is a Julia interface for LIBSVM and for the linear SVM model provided by LIBLINEAR. Supports all LIBSVM models: classification C-SVC, nu-SVC, regression: epsilon-SVR, nu-SVR and distribution estimation: one-class SVM. Model objects are represented by Julia-type SVM which gives you easy access to model features and can be saved e.g. as JLD file.
    Downloads: 5 This Week
    Last Update:
    See Project
  • AI-generated apps that pass security review Icon
    AI-generated apps that pass security review

    Stop waiting on engineering. Build production-ready internal tools with AI—on your company data, in your cloud.

    Retool lets you generate dashboards, admin panels, and workflows directly on your data. Type something like “Build me a revenue dashboard on my Stripe data” and get a working app with security, permissions, and compliance built in from day one. Whether on our cloud or self-hosted, create the internal software your team needs without compromising enterprise standards or control.
    Try Retool free
  • 5
    Tullio.jl

    Tullio.jl

    Tullio is a very flexible einsum macro

    Tullio is a very flexible einsum macro. It understands many array operations written in index notation -- not just matrix multiplication and permutations, but also convolutions, stencils, scatter/gather, and broadcasting. Used by itself the macro writes ordinary nested loops much like Einsum.@einsum. One difference is that it can parse more expressions, and infer ranges for their indices. Another is that it will use multi-threading (via Threads.@spawn) and recursive tiling, on large enough arrays.
    Downloads: 13 This Week
    Last Update:
    See Project
  • 6
    oneAPI.jl

    oneAPI.jl

    Julia support for the oneAPI programming toolkit.

    Julia support for the oneAPI programming toolkit. oneAPI.jl provides support for working with the oneAPI unified programming model. The package is verified to work with the (currently) only implementation of this interface that is part of the Intel Compute Runtime, only available on Linux. This package is still under significant development, so expect bugs and missing features.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 7
    ParallelStencil.jl

    ParallelStencil.jl

    Package for writing high-level code for parallel stencil computations

    ...For example, a 2-D shallow ice solver presented at JuliaCon 2020 [1] achieved a nearly 20 times better performance than a corresponding GPU Array programming implementation; in absolute terms, it reached 70% of the theoretical upper performance bound of the used Nvidia P100 GPU, as defined by the effective throughput metric, T_eff. ParallelStencil relies on the native kernel programming capabilities of CUDA.jl and AMDGPU.jl and on Base.Threads for high-performance computations on GPUs and CPUs, respectively. It is seamlessly interoperable with ImplicitGlobalGrid.jl, which renders the distributed parallelization of stencil-based GPU and CPU apps.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    FFTW.jl

    FFTW.jl

    Julia bindings to the FFTW library for fast Fourier transforms

    This package provides Julia bindings to the FFTW library for fast Fourier transforms (FFTs), as well as functionality useful for signal processing. These functions were formerly a part of Base Julia. Users with a build of Julia based on Intel's Math Kernel Library (MKL) can use MKL for FFTs by setting a preference in their top-level project by either using the FFTW.set_provider!() method, or by directly setting the preference using Preferences.jl. Note that this choice will be recorded for the current project, and other projects that wish to use MKL for FFTs should also set that same preference. ...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 9
    Metal.jl

    Metal.jl

    Metal programming in Julia

    With Metal.jl it's possible to program GPUs on macOS using the Metal programming framework. The package is a work in progress. There are bugs, functionality is missing, and performance hasn't been optimized. Expect to have to make changes to this package if you want to use it. PRs are very welcome. These requirements are fairly strict, and are due to our limited development resources (manpower, hardware). Technically, they can be relaxed. If you are interested in contributing to this, see...
    Downloads: 1 This Week
    Last Update:
    See Project
  • $300 in Free Credit for Your Google Cloud Projects Icon
    $300 in Free Credit for Your Google Cloud Projects

    Build, test, and explore on Google Cloud with $300 in free credit. No hidden charges. No surprise bills.

    Launch your next project with $300 in free Google Cloud credit—no hidden charges. Test, build, and deploy without risk. Use your credit across the Google Cloud platform to find what works best for your needs. After your credits are used, continue building with free monthly usage products. Only pay when you're ready to scale. Sign up in minutes and start exploring.
    Start Free Trial
  • 10

    The GR module for Julia

    Plotting for Julia based on GR

    ...With this module simply type in Julia 'using gr', and you can instantly start calling functions in the GR framework API. GR is based on an implementation of a Graphical Kernel System (GKS) and OpenGL. As a self-contained system, integration into existing applications is quick and easy-- simply use a direct call from Julia with ccall syntax.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    MLPACK is a C++ machine learning library with emphasis on scalability, speed, and ease-of-use. Its aim is to make machine learning possible for novice users by means of a simple, consistent API, while simultaneously exploiting C++ language features to provide maximum performance and flexibility for expert users. * More info + downloads: https://mlpack.org * Git repo: https://github.com/mlpack/mlpack
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next
MongoDB Logo MongoDB
Gen AI apps are built with MongoDB Atlas
Atlas offers built-in vector search and global availability across 125+ regions. Start building AI apps faster, all in one place.