Showing 36 open source projects for "gpu"

View related business solutions
  • Auth0 for AI Agents now in GA Icon
    Auth0 for AI Agents now in GA

    Ready to implement AI with confidence (without sacrificing security)?

    Connect your AI agents to apps and data more securely, give users control over the actions AI agents can perform and the data they can access, and enable human confirmation for critical agent actions.
    Start building today
  • Total Network Visibility for Network Engineers and IT Managers Icon
    Total Network Visibility for Network Engineers and IT Managers

    Network monitoring and troubleshooting is hard. TotalView makes it easy.

    This means every device on your network, and every interface on every device is automatically analyzed for performance, errors, QoS, and configuration.
    Learn More
  • 1
    GPUArrays

    GPUArrays

    Reusable array functionality for Julia's various GPU backends

    Reusable GPU array functionality for Julia's various GPU backends. This package is the counterpart of Julia's AbstractArray interface, but for GPU array types: It provides functionality and tooling to speed-up development of new GPU array types. This package is not intended for end users! Instead, you should use one of the packages that builds on GPUArrays.jl, such as CUDA.jl, oneAPI.jl, AMDGPU.jl, or Metal.jl.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    GPUCompiler.jl

    GPUCompiler.jl

    Reusable compiler infrastructure for Julia GPU backends

    Reusable compiler infrastructure for Julia GPU backends. This package offers reusable compiler infrastructure and tooling for implementing GPU compilers in Julia. It is not intended for end users! Instead, you should use one of the packages that builds on GPUCompiler.jl, such as CUDA.jl or AMDGPU.jl.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    AMDGPU.jl

    AMDGPU.jl

    AMD GPU (ROCm) programming in Julia

    AMD GPU (ROCm) programming in Julia.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 4
    Flux.jl

    Flux.jl

    Relax! Flux is the ML library that doesn't make you tensor

    ...Cutting-edge models such as Neural ODEs are first class, and Zygote enables overhead-free gradients. GPU kernels can be written directly in Julia via CUDA.jl. Flux is uniquely hackable and any part can be tweaked, from GPU code to custom gradients and layers.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Desktop and Mobile Device Management Software Icon
    Desktop and Mobile Device Management Software

    It's a modern take on desktop management that can be scaled as per organizational needs.

    Desktop Central is a unified endpoint management (UEM) solution that helps in managing servers, laptops, desktops, smartphones, and tablets from a central location.
    Learn More
  • 5
    ImplicitGlobalGrid.jl

    ImplicitGlobalGrid.jl

    Distributed parallelization of stencil-based GPU and CPU applications

    ...Samuel Omlin) with Stanford University (Dr. Ludovic Räss) and the Swiss Geocomputing Centre (Prof. Yuri Podladchikov). It renders the distributed parallelization of stencil-based GPU and CPU applications on a regular staggered grid almost trivial and enables close to ideal weak scaling of real-world applications on thousands of GPUs [1, 2, 3]. ImplicitGlobalGrid relies on the Julia MPI wrapper (MPI.jl) to perform halo updates close to hardware limit and leverages CUDA-aware or ROCm-aware MPI for GPU-applications. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    ParallelStencil.jl

    ParallelStencil.jl

    Package for writing high-level code for parallel stencil computations

    ParallelStencil empowers domain scientists to write architecture-agnostic high-level code for parallel high-performance stencil computations on GPUs and CPUs. Performance similar to CUDA C / HIP can be achieved, which is typically a large improvement over the performance reached when using only CUDA.jl or AMDGPU.jl GPU Array programming. For example, a 2-D shallow ice solver presented at JuliaCon 2020 [1] achieved a nearly 20 times better performance than a corresponding GPU Array programming implementation; in absolute terms, it reached 70% of the theoretical upper performance bound of the used Nvidia P100 GPU, as defined by the effective throughput metric, T_eff. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    KernelAbstractions.jl

    KernelAbstractions.jl

    Heterogeneous programming in Julia

    KernelAbstractions (KA) is a package that enables you to write GPU-like kernels targetting different execution backends. KA is intended to be a minimal and performant library that explores ways to write heterogeneous code.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    OptimalTransport.jl

    OptimalTransport.jl

    Optimal transport algorithms for Julia

    This package provides some Julia implementations of algorithms for computational optimal transport, including the Earth-Mover's (Wasserstein) distance, Sinkhorn algorithm for entropically regularized optimal transport as well as some variants or extensions. Notably, OptimalTransport.jl provides GPU acceleration through CUDA.jl and NNlibCUDA.jl.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    101-0250-00

    101-0250-00

    ETH course - Solving PDEs in parallel on GPUs

    This course aims to cover state-of-the-art methods in modern parallel Graphical Processing Unit (GPU) computing, supercomputing and code development with applications to natural sciences and engineering.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Skillfully - The future of skills based hiring Icon
    Skillfully - The future of skills based hiring

    Realistic Workplace Simulations that Show Applicant Skills in Action

    Skillfully transforms hiring through AI-powered skill simulations that show you how candidates actually perform before you hire them. Our platform helps companies cut through AI-generated resumes and rehearsed interviews by validating real capabilities in action. Through dynamic job specific simulations and skill-based assessments, companies like Bloomberg and McKinsey have cut screening time by 50% while dramatically improving hire quality.
    Learn More
  • 10
    LLVM.jl

    LLVM.jl

    Julia wrapper for the LLVM C API

    ...You can use the package to work with LLVM code generated by Julia, to interoperate with the Julia compiler, or to create your own compiler. It is heavily used by the different GPU compilers for the Julia programming language.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    CUDA.jl

    CUDA.jl

    CUDA programming in Julia

    High-performance GPU programming in a high-level language. JuliaGPU is a GitHub organization created to unify the many packages for programming GPUs in Julia. With its high-level syntax and flexible compiler, Julia is well-positioned to productively program hardware accelerators like GPUs without sacrificing performance. The latest development version of CUDA.jl requires Julia 1.8 or higher.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Model Zoo

    Model Zoo

    Please do not feed the models

    ...Each model is organized into its own project folder with pinned package versions, ensuring reproducibility and stability. The examples serve both as educational tools for learning Flux and as practical starting points for building new models. GPU acceleration is supported for most models through CUDA integration, enabling efficient training on compatible hardware. With community contributions encouraged, the Model Zoo acts as a hub for sharing and exploring diverse machine learning applications in Julia.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 13
    Images.jl

    Images.jl

    An image library for Julia

    ...Julia is well-suited to image processing because it is a modern and elegant high-level language that is a pleasure to use, while also allowing you to write "inner loops" that compile to efficient machine code (i.e., it is as fast as C). Julia supports multithreading and, through add-on packages, GPU processing. JuliaImages is a collection of packages specifically focused on image processing. It is not yet as complete as some toolkits for other programming languages, but it has many useful algorithms. It is focused on clean architecture and is designed to unify "machine vision" and "biomedical 3d image processing" communities.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Lux.jl

    Lux.jl

    Elegant and Performant Deep Learning

    Lux.jl is a lightweight and extensible deep learning framework in Julia designed for speed, composability, and clarity. Unlike traditional machine learning libraries that bundle training logic and models, Lux separates model definitions from training routines, encouraging modularity and ease of experimentation. It integrates seamlessly with SciML and other Julia packages, supporting neural differential equations and scientific machine learning workflows.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 15
    InvertibleNetworks.jl

    InvertibleNetworks.jl

    A Julia framework for invertible neural networks

    Building blocks for invertible neural networks in the Julia programming language.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    NNlib.jl

    NNlib.jl

    Neural Network primitives with multiple backends

    This package provides a library of functions useful for neural networks, such as softmax, sigmoid, batched multiplication, convolutions and pooling. Many of these are used by Flux.jl, which loads this package, but they may be used independently.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Transformers.jl

    Transformers.jl

    Julia Implementation of Transformer models

    Transformers.jl is a Julia library that implements Transformer models for natural language processing tasks. Inspired by architectures like BERT, GPT, and T5, the library offers a modular and flexible interface for building, training, and using transformer-based deep learning models. It supports training from scratch and fine-tuning pretrained models, and integrates with Flux.jl for automatic differentiation and optimization.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 18
    AlphaZero.jl

    AlphaZero.jl

    A generic, simple and fast implementation of Deepmind's AlphaZero

    Beyond its much publicized success in attaining superhuman level at games such as Chess and Go, DeepMind's AlphaZero algorithm illustrates a more general methodology of combining learning and search to explore large combinatorial spaces effectively. We believe that this methodology can have exciting applications in many different research areas. Because AlphaZero is resource-hungry, successful open-source implementations (such as Leela Zero) are written in low-level languages (such as C++)...
    Downloads: 21 This Week
    Last Update:
    See Project
  • 19
    Krylov.jl

    Krylov.jl

    A Julia Basket of Hand-Picked Krylov Methods

    If you use Krylov.jl in your work, please cite it using the metadata given in CITATION.cff.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    EvoTrees.jl

    EvoTrees.jl

    Boosted trees in Julia

    A Julia implementation of boosted trees with CPU and GPU support. Efficient histogram-based algorithms with support for multiple loss functions, including various regressions, multi-classification and Gaussian max likelihood.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    DiffEqFlux.jl

    DiffEqFlux.jl

    Pre-built implicit layer architectures with O(1) backprop, GPUs

    DiffEqFlux.jl is a Julia library that combines differential equations with neural networks, enabling the creation of neural differential equations (neural ODEs), universal differential equations, and physics-informed learning models. It serves as a bridge between the DifferentialEquations.jl and Flux.jl libraries, allowing for end-to-end differentiable simulations and model training in scientific machine learning. DiffEqFlux.jl is widely used for modeling dynamical systems with learnable...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    NeuralPDE.jl

    NeuralPDE.jl

    Physics-Informed Neural Networks (PINN) Solvers

    NeuralPDE.jl is a Julia library for solving partial differential equations (PDEs) using physics-informed neural networks and scientific machine learning. Built on top of the SciML ecosystem, it provides a flexible and composable interface for defining PDEs and training neural networks to approximate their solutions. NeuralPDE.jl enables hybrid modeling, data-driven discovery, and fast PDE solvers in high dimensions, making it suitable for scientific research and engineering applications.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    Metal.jl

    Metal.jl

    Metal programming in Julia

    With Metal.jl it's possible to program GPUs on macOS using the Metal programming framework. The package is a work in progress. There are bugs, functionality is missing, and performance hasn't been optimized. Expect to have to make changes to this package if you want to use it. PRs are very welcome. These requirements are fairly strict, and are due to our limited development resources (manpower, hardware). Technically, they can be relaxed. If you are interested in contributing to this, see...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Tullio.jl

    Tullio.jl

    Tullio is a very flexible einsum macro

    Tullio is a very flexible einsum macro. It understands many array operations written in index notation -- not just matrix multiplication and permutations, but also convolutions, stencils, scatter/gather, and broadcasting. Used by itself the macro writes ordinary nested loops much like Einsum.@einsum. One difference is that it can parse more expressions, and infer ranges for their indices. Another is that it will use multi-threading (via Threads.@spawn) and recursive tiling, on large enough arrays.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    SciML Style Guide for Julia

    SciML Style Guide for Julia

    A style guide for stylish Julia developers

    ...All recommended functionality should be tested, and any known generality issues should be documented in an issue (and with a @test_broken test when possible). However, a function that is known to not be GPU-compatible is not grounds to block merging, rather it is encouraged for a follow-up PR to improve the general type support.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • Next