Showing 15 open source projects for "fast performance"

View related business solutions
  • Retool your internal operations Icon
    Retool your internal operations

    Generate secure, production-grade apps that connect to your business data. Not just prototypes, but tools your team can actually deploy.

    Build internal software that meets enterprise security standards without waiting on engineering resources. Retool connects to your databases, APIs, and data sources while maintaining the permissions and controls you need. Create custom dashboards, admin tools, and workflows from natural language prompts—all deployed in your cloud with security baked in. Stop duct-taping operations together, start building in Retool.
    Build an app in Retool
  • Outgrown Windows Task Scheduler? Icon
    Outgrown Windows Task Scheduler?

    Free diagnostic identifies where your workflow is breaking down—with instant analysis of your scheduling environment.

    Windows Task Scheduler wasn't built for complex, cross-platform automation. Get a free diagnostic that shows exactly where things are failing and provides remediation recommendations. Interactive HTML report delivered in minutes.
    Download Free Tool
  • 1
    NonlinearSolve.jl

    NonlinearSolve.jl

    High-performance and differentiation-enabled nonlinear solvers

    ...The package includes its own high-performance nonlinear solvers which include the ability to swap out to fast direct and iterative linear solvers, along with the ability to use sparse automatic differentiation for Jacobian construction and Jacobian-vector products. NonlinearSolve.jl interfaces with other packages of the Julia ecosystem to make it easy to test alternative solver packages and pass small types to control algorithm swapping.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 2
    StaticArrays.jl

    StaticArrays.jl

    Statically sized arrays for Julia

    StaticArrays.jl is a Julia package that provides statically sized arrays with fast, stack-allocated memory storage and optimized performance for small array computations. It is particularly useful in numerical computing where small fixed-size matrices or vectors are used frequently, such as in robotics, physics simulations, or linear algebra. StaticArrays eliminate dynamic memory allocation overhead and enable compile-time optimizations for performance close to hand-written loops.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    QuantumClifford.jl

    QuantumClifford.jl

    Clifford circuits, graph states, and other quantum Stabilizer tools

    A Julia package for working with quantum stabilizer states and Clifford circuits that act on them. Graphs states are also supported. The package is already very fast for the majority of common operations, but there are still many low-hanging fruits performance-wise. See the detailed suggested readings & references page for background on the various algorithms.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    LinearSolve.jl

    LinearSolve.jl

    High-Performance Unified Interface for Linear Solvers in Julia

    LinearSolve.jl is a unified interface for the linear solving packages of Julia. It interfaces with other packages of the Julia ecosystem to make it easy to test alternative solver packages and pass small types to control algorithm swapping. It also interfaces with the ModelingToolkit.jl world of symbolic modeling to allow for automatically generating high-performance code. Performance is key: the current methods are made to be highly performant on scalar and statically sized small problems,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • 5
    The Julia Programming Language

    The Julia Programming Language

    High-level, high-performance dynamic language for technical computing

    Julia is a fast, open source high-performance dynamic language for technical computing. It can be used for data visualization and plotting, deep learning, machine learning, scientific computing, parallel computing and so much more. Having a high level syntax, Julia is easy to use for programmers of every level and background. Julia has more than 2,800 community-registered packages including various mathematical libraries, data manipulation tools, and packages for general purpose computing. ...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 6
    Gen.jl

    Gen.jl

    A general-purpose probabilistic programming system

    ...Gen features an easy-to-use modeling language for writing down generative models, inference models, variational families, and proposal distributions using ordinary code. But it also lets users migrate parts of their model or inference algorithm to specialized modeling languages for which it can generate especially fast code. Users can also hand-code parts of their models that demand better performance. Neural network inference is fast, but can be inaccurate on out-of-distribution data, and requires expensive training.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    WaterLily.jl

    WaterLily.jl

    Fast and simple fluid simulator in Julia

    WaterLily.jl is a fluid dynamics simulation package in Julia that uses lattice Boltzmann methods (LBM) to simulate incompressible flows and fluid-structure interactions in two dimensions. It is designed for easy use and rapid prototyping of physical systems involving particles, obstacles, and hydrodynamic forces. The package is well-suited for educational purposes, computational physics research, and lightweight fluid simulations.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 8
    Symbolics.jl

    Symbolics.jl

    Symbolic programming for the next generation of numerical software

    Symbolics.jl is a high-performance symbolic computation library for the Julia programming language. It enables users to define, manipulate, and analyze mathematical expressions symbolically, with strong support for symbolic differentiation, simplification, equation solving, and code generation. Designed for use in scientific computing, machine learning, and engineering, Symbolics.jl integrates smoothly with Julia’s numerical ecosystem, allowing symbolic expressions to be compiled and...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 9
    DynamicQuantities.jl

    DynamicQuantities.jl

    Lightweight + fast physical quantities in Julia

    DynamicQuantities defines a simple statically-typed Quantity type for Julia. Physical dimensions are stored as a value, as opposed to a parametric type, as in Unitful.jl. This can greatly improve both runtime performance, by avoiding type instabilities, and startup time, as it avoids overspecializing methods.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Flexible scheduling software to help you succeed Icon
    Flexible scheduling software to help you succeed

    For Professionals and small to mid-sized businesses

    With seamless client scheduling, secure payments, and workflow automation, all you have to do is show up on time.
    Learn More
  • 10
    Circuitscape.jl

    Circuitscape.jl

    Algorithms from circuit theory to predict connectivity

    Circuitscape is an open-source program that uses circuit theory to model connectivity in heterogeneous landscapes. Its most common applications include modeling the movement and gene flow of plants and animals, as well as identifying areas important for connectivity conservation. The new Circuitscape is built entirely in the Julia language, a new programming language for technical computing. Julia is built from the ground up to be fast. As such, this offers a number of advantages over the...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    ReverseDiff

    ReverseDiff

    Reverse Mode Automatic Differentiation for Julia

    ReverseDiff is a fast and compile-able tape-based reverse mode automatic differentiation (AD) that implements methods to take gradients, Jacobians, Hessians, and higher-order derivatives of native Julia functions (or any callable object, really). While performance can vary depending on the functions you evaluate, the algorithms implemented by ReverseDiff generally outperform non-AD algorithms in both speed and accuracy.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Interpolations.jl

    Interpolations.jl

    Fast, continuous interpolation of discrete datasets in Julia

    This package implements a variety of interpolation schemes for the Julia language. It has the goals of ease of use, broad algorithmic support, and exceptional performance. Currently, this package supports B-splines and irregular grids. The API has been designed with the intent to support more options. Initial support for Lanczos interpolation was recently added. Pull requests are more than welcome! It should be noted that the API may continue to evolve over time.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    MLPACK is a C++ machine learning library with emphasis on scalability, speed, and ease-of-use. Its aim is to make machine learning possible for novice users by means of a simple, consistent API, while simultaneously exploiting C++ language features to provide maximum performance and flexibility for expert users. * More info + downloads: https://mlpack.org * Git repo: https://github.com/mlpack/mlpack
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    FLoops.jl

    FLoops.jl

    Fast sequential, threaded, and distributed for-loops for Julia

    Fast sequential, threaded, and distributed for-loops for Julia, fold for humans.FLoops.jl provides a macro @floop. It can be used to generate a fast generic sequential and parallel iteration over complex collections. Furthermore, the loop written in @floop can be executed with any compatible executors. See FoldsThreads.jl for various thread-based executors that are optimized for different kinds of loops. FoldsCUDA.jl provides an executor for GPU. FLoops.jl also provides a simple distributed...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    ParallelAccelerator.jl

    ParallelAccelerator.jl

    ParallelAccelerator package, part of the High Performance Scripting

    ...With the @acc macro that ParallelAccelerator provides, users may specify parts of a program to accelerate. ParallelAccelerator compiles these parts of the program to fast native code. It automatically eliminates overheads such as array bounds checking when it is safe to do so. It also parallelizes and vectorizes many data-parallel operations. ParallelAccelerator is part of the High Performance Scripting (HPS) project at Intel Labs.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next