Showing 13 open source projects for "computations"

View related business solutions
  • AI-generated apps that pass security review Icon
    AI-generated apps that pass security review

    Stop waiting on engineering. Build production-ready internal tools with AI—on your company data, in your cloud.

    Retool lets you generate dashboards, admin panels, and workflows directly on your data. Type something like “Build me a revenue dashboard on my Stripe data” and get a working app with security, permissions, and compliance built in from day one. Whether on our cloud or self-hosted, create the internal software your team needs without compromising enterprise standards or control.
    Try Retool free
  • Outgrown Windows Task Scheduler? Icon
    Outgrown Windows Task Scheduler?

    Free diagnostic identifies where your workflow is breaking down—with instant analysis of your scheduling environment.

    Windows Task Scheduler wasn't built for complex, cross-platform automation. Get a free diagnostic that shows exactly where things are failing and provides remediation recommendations. Interactive HTML report delivered in minutes.
    Download Free Tool
  • 1
    Oscar.jl

    Oscar.jl

    A comprehensive open source computer algebra system for computations

    ...In principle it can be installed and used like any other Julia package; doing so will take a couple of minutes. A comprehensive open source computer algebra system for computations in algebra, geometry, and number theory.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    ParallelStencil.jl

    ParallelStencil.jl

    Package for writing high-level code for parallel stencil computations

    ...ParallelStencil relies on the native kernel programming capabilities of CUDA.jl and AMDGPU.jl and on Base.Threads for high-performance computations on GPUs and CPUs, respectively. It is seamlessly interoperable with ImplicitGlobalGrid.jl, which renders the distributed parallelization of stencil-based GPU and CPU apps.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 3
    Dagger.jl

    Dagger.jl

    A framework for out-of-core and parallel execution

    Dagger.jl is a framework for out-of-core and parallel computing in Julia that allows users to construct and execute dynamic task graphs. It is designed for large-scale, distributed, and memory-efficient computations. Dagger supports lazy evaluation and scheduling across multiple threads or machines, enabling high-performance workflows for data processing, scientific computing, and machine learning.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 4
    ProgressMeter.jl

    ProgressMeter.jl

    Progress meter for long-running computations

    ProgressMeter.jl is a lightweight Julia package that provides customizable progress bars for long-running loops and computations. It allows developers to track the progress of tasks with real-time visual feedback in the terminal, making it easier to monitor performance, debug slow operations, or report computational progress in user-facing applications.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • 5
    LazySets.jl

    LazySets.jl

    Scalable Symbolic-Numeric Set Computations

    LazySets.jl is a Julia package for calculus with convex sets. The aim is to provide a scalable library for solving complex set-based problems, such as those encountered in differential inclusions or reachability analysis techniques in the domain of formal verification. Typically, one is confronted with a set-based recurrence with a given initial set and/or input sets, and for visualization purposes, the final result has to be obtained through an adequate projection onto low dimensions. This...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Finch.jl

    Finch.jl

    Sparse tensors in Julia and more

    Finch is a cutting-edge Julia-to-Julia compiler specially designed for optimizing loop nests over sparse or structured multidimensional arrays. Finch empowers users to write conventional for loops which are transformed behind-the-scenes into fast sparse code.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Hecke.jl

    Hecke.jl

    Computational algebraic number theory

    Hecke is a software package for algebraic number theory maintained by Claus Fieker, Tommy Hofmann and Carlo Sircana. It is written in julia and is based on the computer algebra packages Nemo and AbstractAlgebra. Hecke is part of the OSCAR project and the development is supported by the Deutsche Forschungsgemeinschaft DFG within the Collaborative Research Center TRR 195.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 8
    PartitionedArrays.jl

    PartitionedArrays.jl

    Vectors and sparse matrices partitioned into pieces

    This package provides distributed (a.k.a. partitioned) vectors and sparse matrices in Julia. See the documentation for further details.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    GraphNeuralNetworks.jl

    GraphNeuralNetworks.jl

    Graph Neural Networks in Julia

    GraphNeuralNetworks.jl is a graph neural network library written in Julia and based on the deep learning framework Flux.jl.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Free and Open Source HR Software Icon
    Free and Open Source HR Software

    OrangeHRM provides a world-class HRIS experience and offers everything you and your team need to be that HR hero you know that you are.

    Give your HR team the tools they need to streamline administrative tasks, support employees, and make informed decisions with the OrangeHRM free and open source HR software.
    Learn More
  • 10
    StaticArrays.jl

    StaticArrays.jl

    Statically sized arrays for Julia

    StaticArrays.jl is a Julia package that provides statically sized arrays with fast, stack-allocated memory storage and optimized performance for small array computations. It is particularly useful in numerical computing where small fixed-size matrices or vectors are used frequently, such as in robotics, physics simulations, or linear algebra. StaticArrays eliminate dynamic memory allocation overhead and enable compile-time optimizations for performance close to hand-written loops.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    ModelingToolkit.jl

    ModelingToolkit.jl

    Modeling framework for automatically parallelized scientific ML

    ModelingToolkit.jl is a modeling language for high-performance symbolic-numeric computation in scientific computing and scientific machine learning. It then mixes ideas from symbolic computational algebra systems with causal and acausal equation-based modeling frameworks to give an extendable and parallel modeling system. It allows for users to give a high-level description of a model for symbolic preprocessing to analyze and enhance the model. Automatic symbolic transformations, such as...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 12
    ITensors.jl

    ITensors.jl

    A Julia library for efficient tensor computations and tensor network

    ITensors.jl is a high-performance Julia library for tensor network calculations, primarily used in quantum physics and computational science. It enables efficient manipulation of large, structured tensors with named indices and provides an intuitive interface for implementing algorithms like DMRG (Density Matrix Renormalization Group), TEBD (Time-Evolving Block Decimation), and more. ITensors.jl leverages Julia’s multiple dispatch and performance features to simplify the development of...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    JUDI.jl

    JUDI.jl

    Julia Devito inversion

    ...The focus of the package lies on seismic modeling as well as PDE-constrained optimization such as full-waveform inversion (FWI) and imaging (LS-RTM). Wave equations in JUDI are solved with Devito, a Python domain-specific language for automated finite-difference (FD) computations. JUDI's modeling operators can also be used as layers in (convolutional) neural networks to implement physics-augmented deep learning algorithms thanks to its implementation of ChainRules's rrule for the linear operators representing the discre wave equation.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next