Showing 2 open source projects for "code analysis"

View related business solutions
  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • Ship AI Apps Faster with Vertex AI Icon
    Ship AI Apps Faster with Vertex AI

    Go from idea to deployed AI app without managing infrastructure. Vertex AI offers one platform for the entire AI development lifecycle.

    Ship AI apps and features faster with Vertex AI—your end-to-end AI platform. Access Gemini 3 and 200+ foundation models, fine-tune for your needs, and deploy with enterprise-grade MLOps. Build chatbots, agents, or custom models. New customers get $300 in free credit.
    Try Vertex AI Free
  • 1

    TA-Lib.git: Technical Analysis Library

    Mirror of the TA-Lib project using a Git repository

    This project is intended to provide Git access to the code of the original project, TA-Lib, which uses Subversion. It is intended for system integrators wishing to use TA-Lib in their Git-managed project through Git submodules or subtrees. No actual development is being done here; all development happens in the original project.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    abu

    abu

    Abu quantitative trading system (stocks, options, futures, bitcoin)

    Abu Quantitative Integrated AI Big Data System, K-Line Pattern System, Classic Indicator System, Trend Analysis System, Time Series Dimension System, Statistical Probability System, and Traditional Moving Average System conduct in-depth quantitative analysis of investment varieties, completely crossing the user's complex code quantification stage, more suitable for ordinary people to use, towards the era of vectorization 2.0. The above system combines hundreds of seed quantitative models, such as financial time series loss model, deep pattern quality assessment model, long and short pattern combination evaluation model, long pattern stop-loss strategy model, short pattern covering strategy model, big data K-line pattern Historical portfolio fitting model, trading position mentality model, dopamine quantification model, inertial residual resistance support model, long-short swap revenge probability model, strong and weak confrontation model, trend angle change rate model, etc.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next
MongoDB Logo MongoDB
Gen AI apps are built with MongoDB Atlas
Atlas offers built-in vector search and global availability across 125+ regions. Start building AI apps faster, all in one place.
Try Free →