MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
Start Free
Build Securely on AWS with Proven Frameworks
Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.
Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
Fully written in python which is one of the most used programming languages due to its simplified syntax and shallow learning curve. It is the first time in history that users, regardless of their background, can so easily add features to an investment research platform. The MIT Open Source license allows any user to fork the project to either add features to the broader community or create their own customized terminal version.
A portfolio-optimizer using Markowitz(1952) mean-variance model
PortOpt [Portfolio Optimizer] is a C++ program (with Python binding) implementing the Markowitz(1952) mean-variance model with agent's linear indifference curves toward risk in order to find the optimal assets portfolio under risk.
You have to provide PortOpt (in text files or - if you use the api - using your own code) the variance/covariance matrix of the assets, their average returns and the agent risk preference.